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Chapter 1

Challenges in Modern Healthcare
Delivery

1.1 Introduction

In 2006, the Dutch government dramatically reformed the healthcare sector and the un-
derlying financial system [198]. The main purposes of the reforms were to decrease costs
and improve efficiency. More freedom for care providers and patients was introduced:
care providers were allowed to employ commercial initiatives and could make (limited)
choices regarding the patient groups they would like to treat; patients could more or less
freely choose where they wanted to be treated. Since inhabitants of the Netherlands are
obliged to buy health insurance, the government decided to give the health insurers a
major role in enforcing the new paradigm of market thinking in the Dutch healthcare
system.

In terms of quality and efficiency, the Dutch healthcare system performs about average
compared to other western countries [169]. An aging population, increased use of tech-
nology and a society demanding a higher quality and accessibility of care, are among
others reasons that healthcare costs in developed countries consume a larger part of the
Gross Domestic Product (GDP) every year (see Figure 1.1). The Netherlands is one of
the countries whose healthcare system faces immense financial challenges, now and in
the future.

Since the financial funds and thus the supply of healthcare is finite, policy makers have
to ration care and make choices on how to distribute physical, human, and monetary
resources. Such choices also have to be made at the hospital level (e.g., which patient
groups will be treated in this hospital), and on a departmental level (e.g., which pa-
tient gets which available bed). An extra challenge involved with an aging population
is that the total working population, and thus the number of healthcare professionals
decreases, while the part of the population that requires care increases. With the current
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4 CHAPTER 1. CHALLENGES IN MODERN HEALTHCARE DELIVERY

hospital efficiency levels it will be difficult, if not impossible, to provide an appropriate
level of care for the sick and the elderly in the coming decades.

Figure 1.1: Total health expenditure as share of GDP, 2009. The dark gray (first) part of the bar in
the chart represents the public share, while the lighter gray (second) part of the bar represents
the private share. (1): Total expenditure excluding investments. (2): In the Netherlands, it is not
possible to distinguish clearly the public and private share for the part of health expenditures
related to investments. Source: OECD Health Data 2011 [144]

United States 17,4
Netherlands (2) 12,0
France
German
Denmar
Canada ,
Switzerland 11,
Austria ,
Belgium (1) 10,
New Zealand
Portugal (2008)
Sweden
United Kingdom
Iceland
Greece (2007)
Norway
Ireland
OECD
SFain
taly
Slovenia
Finland
Slovak Republic
Australia (2008
Japan (2008
Chile
Czech Republic
Israel
Hungary
Poland
Estonia
Korea
Luxembour%ZOOS)
exico
Turkey (2008)

N
(g
~

U1\ oo

~

—_
—_
;H
N

o
W

7

[ Gay
oo
ok

~

=
®

o
S
—_~ O\
OO~ - g
B0 PP o
B N R I T IR
Lumuiiaa Yy

% GDP



1.2. CURING THE QUEUE 5
1.2 Curing the Queue

“Managers make resource allocation decisions, but doctors decide what the hospital
does with those resources” [39]. Even though this statement is ten years old, it is still
the status quo. The interests of doctors and managers will eventually be conflicting at
some point. While doctors focus on treating each individual patient as well as they
possibly can, managers also focus on optimal usage of resources. One can imagine that
this easily leads to ethical dilemma’s; what if the treatment of a single cancer patient
costs 100K Euros, while five other patients suffering from cardiovascular disease can be
treated for 20K Euros each? Should a single patient with a mean length of stay (LOS) of
20 days be admitted at an inpatient ward, or should four patients with a mean LOS of 5
days be admitted sequentially instead?

These dilemma’s easily show the difficult decisions doctors and healthcare managers
have to make. It is however very common in hospitals to avoid explicit decisions on
resource allocation and capacity distribution and to react on ad-hoc basis to problems
that occur. Sometimes this is accompanied with very undesirable system outcomes (e.g.,
patients canceled for surgery several times, unused (scarce) time at outpatient clinics,
extremely long waiting times).

The models we present in this dissertation allow for a quantification of consequences
of capacity distribution decisions. The item that is distributed can either be time, or
another kind of resource such as staffed beds. Since each nurse has a limited amount of
time during a working day, this is ultimately also a time distribution problem. With the
models a clear and succinct understanding of the problem, its possible solutions, and
implications of these solutions can be obtained. Of course, the decision is then still not
easy. But hopefully doctors and managers then have a profound idea of what they are
actually deciding upon.

Hospital departments often function as separate islands, and have their own, some-
times conflicting interests. A low level of integration with other departments is com-
mon [74, 75]. It comes at no surprise that many efficiency improvement studies also
focus on single departments [189]. However, departments may have a significant influ-
ence on each other [129]. This is (partly) recognized by the increasing popularity of care
pathways. In a care pathway, care is optimized for patients with identical characteristics
(e.g., symptoms, disease, age, etc.). All steps in the care process (for example outpatient
consultation, diagnostic testing, surgery, hospitalization, and so on) are meticulously
described and planned. An adverse consequence of prioritizing patients in a care path-
way is a suboptimal care process for regular patients.

Together with care pathways, techniques from operations management and operations
research, such as lean, theory of constraints, six sigma and simulation [209], have gained
increased attention in the last decade. Even though the results in the (mostly theoretical)
studies are usually promising and show room for efficiency gain, most techniques from
industry are not directly applicable [136] and careful study is required to choose the
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right technique.

In this dissertation, which consists of three parts, we study several problems that are
related to the management of healthcare and the cure of disease. In every chapter a hos-
pital capacity distribution problem is analyzed using operations research techniques.
An immediate consequence of rationing resources is the expansion of queues, and it
comes at no surprise that the usage of queuing theory to study healthcare problems
has increased in the last years. This is not only visible in the operations research jour-
nals (see for example [29, 80, 156, 190, 213]) but also from the medical journals (e.g.,
[69, 135, 185, 188, 212]).

1.3 Stochastic Operations Research in Healthcare

The mathematical field of operations research, or decision science, has emerged from
military applications in the first half of the 20th century. In most operations research
problems a complex decision needs to be made, where several constraints and inter-
ests of various stakeholders need to be taken into account. Since the end of last century,
complex decision problems emerging from the healthcare sector have gained increased
attention from operations researchers. Well developed areas include benchmarking of
healthcare facilities using data envelopment analysis [94], nurse rostering [33], operat-
ing room planning and scheduling [38], appointment scheduling in outpatient clinics
[40], and simulation studies to improve patient flow [102]. We suggest [99] for a struc-
tured review of the literature.

In stochastic operations research, problems are studied that involve decision making
under uncertainty. This basically means that at least one parameter or variable in the
problem is random. In most cases a probability distribution is used to account for the
stochasticity. Since life involves many uncertainties, one can imagine that techniques
from stochastic operations research are very well applicable to model real life problems,
for instance from the healthcare domain. The field of stochastic operations research in-
cludes queuing theory, Markov decision theory and game theory, which are the three
techniques that are used in this dissertation to tackle the complex healthcare problems
we came across.

Queuing theory, which analyzes waiting times and service levels in service systems,
originated from telecom problems. It is the most invoked approach in this dissertation,
rather than simulation, which is another, widely used, approach to analyze healthcare
problems (see [26, 102]). One of the advantages of simulation modeling compared to
queuing modeling is the possibility to take into account any desired system character-
istic. This is at the same time also one of the major drawbacks of this method, since one
might get lost in the details and lose sight of the real problem. In order to perform a
simulation study, a large amount of data and computation time is required [47], which
makes it very time consuming. Performing a mathematical analysis gives the modeler a
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fundamental insight in the problem. In this dissertation we show, among other things,
the added value of queuing theory in the complex process of decision making in health-
care.

1.4 Applied Research Environment

The majority of the research presented in this dissertation is inspired by logistical chal-
lenges faced by Leiden University Medical Center (LUMC). The LUMC is situated in the
historic city of Leiden, and serves together with eight other general hospitals a commu-
nity of around two million people in an urban area in the south-west of the Netherlands.
The main focus of the LUMC is top clinical and highly specialized care. It is the small-
est and oldest of the eight academic hospitals in the Netherlands and employs around
7,000 people. For 2010, almost 500,000 outpatient clinic visits, more than 200,000 diag-
nostic procedures, over 10,000 surgeries were registered, and the average inpatient LOS
was 6.4 days. The major patient flows and their dimensions are given in Figure 1.2.
The level as to which the research findings have been implemented in a hospital set-
ting varies and is summarized in Table 1.1. Since the models that are developed are of
generic nature, they can be directly applied to represent another hospital than LUMC.

Table 1.1: Level of implementation in LUMC (if not mentioned otherwise) per dissertation Chap-
ters 3-9

Chapter Level of implementation

3 Findings completely implemented

4 Implementation studies at AMC and LUMC
5,6 Theoretical

7,8 Partially implemented

9 Theoretical

1.5 Structure of this Dissertation

This dissertation consists of three parts. In Figure 1.3 is shown how the chapters relate
to the hospital departments as also shown in Figure 1.2.

Part I serves as an introduction, and consists of this chapter and Chapter 2, Queuing
Networks in Healthcare Systems. In this chapter we describe how queuing theory, and
networks of queues in particular, can be invoked to model, study, analyze and solve
healthcare problems. We describe important classical queuing results, especially meant
to provide medical professionals with a theoretical background on the techniques used
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Figure 1.2: LUMC patient flow, based on 2010 data. The size of the arrow indicates the magnitude
of the flow. The gray colored arrows are fictitious, since the Acute Care Ward opened in 2011.
Abbreviations: ED — Emergency Department; ICU — Intensive Care Unit; OR — Operating Rooms;
PAC - Preanesthesia Evaluation Clinic. Data source: LUMC Management Information System
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in this thesis. We also provide a review of the literature on queuing networks in health-
care.

Part II consists of four chapters, and is devoted to challenges faced by outpatient clin-
ics and diagnostic facilities. Chapter 3, Redesign of the PAC, studies the reorganization
of an outpatient clinic. We demonstrate how the involvement of essential employees
combined with applications of mathematical techniques to support the decision mak-
ing process results in a successful intervention. The setting is the preanesthesia evalu-
ation clinic of a university hospital, where patients consult several medical profession-
als, either on walk-in or appointment basis. We use queuing theory to model the initial
set-up of the clinic and possible alternative designs. With the queuing model, possi-
ble improvements in efficiency are investigated. Key points in the intervention are the
rescheduling of appointments and the reallocation of tasks.
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Figure 1.3: Relationship of dissertation chapters with LUMC departments
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Outpatient clinics and diagnostic facilities show an increased acceptance of unsched-
uled patient arrivals to improve accessibility. The methodology we present in Chapter 4,
Designing Cyclic Appointment Systems, keeps waiting time at the facility for unscheduled
patients below an acceptable level, while controlling the access time for scheduled pa-
tients. Formally, the access time is defined as the time between an appointment request
and the appointment date, where the time scale is usually in days or weeks. Waiting
time is defined as the time between the patient’s arrival at a hospital facility and the
start of the consultation and/or treatment, where the time scale is usually in minutes
or hours. The method developed in this chapter consists of two separate but iteratively
linked models, one for the day process that governs scheduled and unscheduled ar-
rivals on the day and one for the access process of scheduled arrivals. A blueprint for
the appointment schedule, consisting of the number of appointments to plan per day
and the moment on the day to schedule the appointments, is calculated iteratively using
the outcomes of the two models. Herein, the waiting and access times are balanced.

Chapter 5, Appointments for Care Pathway Patients, is motivated by the increasing popu-
larity of care pathways in outpatient clinics. It is not uncommon that patients complete
a significant part of the path in one day. Given the vast number of hospital facilities the
patient has to visit, hospitals aim to optimize the flow of these patient groups by priori-
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tizing them in the appointment planning process. As a result, regular patients who are
not in a care pathway may experience increased waiting times. We develop a queuing
model that allows for finding a trade-off between the accessibility for patients from the
care pathway and waiting time for regular patients at an outpatient clinic.

In Chapter 6, Allocation of MRI Scan Capacity, we consider an MRI scanning facility run
by a Radiology department. Several medical departments compete for capacity and
have private information regarding their demand for scans. The fairness of the capac-
ity allocation by the Radiology department depends on the quality of the information
provided by the medical departments. We employ a generic Bayesian Game approach
that stimulates the disclosure of true demand (truth-telling), so that capacity is allocated
tairly.

Part III consists of three chapters and considers challenges that evolve when urgent
and elective patient flow are mixed. Chapter 7, Planning and Scheduling of Semi-Urgent
Surgeries, studies the trade-off between cancellations of elective surgeries due to semi-
urgent surgeries, and unused operating room (OR) time due to excessive reservation
of OR time for semi-urgent surgeries. Semi-urgent surgeries, to be performed soon but
not necessarily today, pose an uncertain demand on available hospital resources, and
interfere with the planning of elective patients. For a highly utilized OR, reservation
of OR time for semi-urgent surgeries avoids excessive cancellations of elective surg-
eries, but may also result in unused OR time, since arrivals of semi-urgent patients are
unpredictable. First, using a queuing theory framework, we evaluate the OR capacity
needed to accommodate the incoming semi-urgent surgeries. Second, we introduce an-
other queuing model that enables a trade-off between the cancellation rate of elective
surgeries and unused OR time. Third, based on Markov decision theory, we develop
a decision support tool that assists the scheduling process of elective and semi-urgent
surgeries.

Using the methodology presented in Chapter 7, part of the OR capacity of the Neu-
rosurgery department at LUMC was allocated to semi-urgent surgeries. In Chapter 8,
Implementation Study: Neurosurgery Planning, we study the implementation process and
the effect of dedicating OR slots to semi-urgent surgeries on elective patient cancella-
tions and OR utilization.

Chapter 9, The Emergency Observation and Assessment Ward, is based on a project which
started during a working visit to the University of Toronto in October-November 2010,
and was finished during a working visit to the University of Western Ontario in June
2011. A recent development to reduce Emergency Department (ED) crowding and in-
crease urgent patient admissions is the opening of an Emergency Observation and As-
sessment Ward (EOA Ward). At these wards urgent patients are temporarily hospital-
ized until they can be transferred to an inpatient bed. We present an overflow model
to evaluate the effect of employing an EOA Ward on elective and urgent patient admis-
sions. We conclude this dissertation with an epilogue that reviews the most important
results and provides an outlook for the future.



Chapter 2

Queuing Networks in Healthcare
Systems

2.1 Introduction

In this chapter we describe how queuing theory, and networks of queues in particular,
can be invoked to model, study, analyze and solve healthcare problems. We describe
important theoretical queuing results, give a review of the literature on the topic, and
suggest directions for future research. For further reference, the book chapter [78] pro-
vides an overview of queuing theory applications in healthcare.

2.1.1 Some General Queuing Concepts in a Healthcare Setting

A queue can generally be characterized by its arrival and service processes, the number
of servers, and the service discipline. The arrival process is specified by a probability
distribution that has an arrival rate associated with it, which is usually the mean number
of patients that arrives during a time unit (e.g., minutes, hours or days). A common
choice for the probabilistic arrival process is the Poisson process, in which the inter-
arrival times of patients are independent and exponentially distributed.

The service process specifies the service requirements of patients, again using a prob-
ability distribution with associated service rate. A common choice is the exponential
distribution, which is convenient for obtaining analytical tractable results. The number
of servers in a healthcare setting may represent the number of doctors at an outpatient
clinic, the number of MRI scanners at a diagnostic department, and so on. The service
discipline specifies how incoming patients are served. The most common discipline is
First Come First Serve (FCFS), where patients are served in order of arrival. Other ex-
amples are briefly addressed in Subsection 2.2.2. Some patients may have priority over
other patients. This can be such that the service of a lower priority patient is interrupted

11



12 CHAPTER 2. QUEUING NETWORKS IN HEALTHCARE SYSTEMS

when a higher priority patient arrives (preemptive priority), or the service of the lower
priority patient is finished first (non-preemptive priority).

Figure 2.1: A simple queue

Service process
Waiting room

Arrival process Departure process

Typical measures for the performance of the system include the mean sojourn time,
E[IV], the mean time that a patient spends in the queue and in service. The sojourn time
is a random variable as it is determined by the stochastic arrival and service processes.
The mean waiting time, E[WW9], gives the mean time a patient spends in the queue wait-
ing for service. How E[W] and E[W] are calculated depends, among other things, on
the choice for the arrival and service processes, and is given for several basic queues in
Subsection 2.2.2.

Kendall’s Notation

All queues in this chapter are described using the so-called Kendall notation: A/B/s, where
A denotes the arrival process, B denotes the service process, and s is the number of servers.
There are several extensions to this notation, see for example [202]. Clearly, there are many
distinctive cases of queues:

M /M /1: The single-server queue with Poisson arrivals and exponential service times. The
M stands for the Markovian or Memoryless property.

M /D/1: The single-server queue with Poisson arrivals and Deterministic service times.

M /G /1: The single-server queue with Poisson arrivals and General (i.e., not specified) ser-
vice time distribution.

Other arrival processes may also apply: consider for example the D/M /1, G/M /1 and G/G/1
queue. All of the forms above also exist in the case of multiple servers (s > 1).

The load of the queue is defined as the mean utilization rate per server, which is the
amount of work that arrives on average per time unit, divided by the amount of work
the queue can handle on average per time unit. Suppose our server is a single doctor in
an outpatient clinic, then the load specifies the fraction of time the doctor is working.
The load, p, equals the amount of work brought to the system per time unit, i.e. the
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patient arrival rate, A\, multiplied by the mean service time per patient, E[S]:
p = AE[S]. (2.1)

The load is the fraction of time the server, working at unit rate, must work to handle
the arriving amount of work. It is required that p < 1 (in other words, the server should
work less than 100 percent of the time). If p > 1, then on average more work arrives at
the queue than can be handled, which inevitably leads to a continuously growing num-
ber of patients in the queue waiting for service, i.e., an unstable system. Only when the
arrival and service processes are deterministic (i.e., the inter-arrival and service times
have zero variance), may the load equal 1. The mean waiting time, E[I#/9], increases with
load p. As an illustration, consider a single-server queue with Poisson arrivals and gen-
eral service times (the so-called M//G/1 queue), with mean E[S] and squared coefficient
of variation (scv) ¢%, which is calculated by dividing the variance by the squared mean.
For this queue, the relationship between p and E[IW9] is characterized by the Pollaczek-
Khintchine formula [48]:

p 1+c
EWY) = E[S| =55,

(2.2)

In Figure 2.2 the relation is shown graphically for ¢ = 1. We see that the mean wait-

Figure 2.2: The relationship between load p and mean waiting time E[IV?] for the M /M /1 queue
with Poisson arrivals and exponential service times
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ing time increases with the load. When the load is low, a small increase therein has a
minimal effect on the mean waiting time. However, when the load is high, a small in-
crease has a tremendous effect on the mean waiting time. As an illustration, increasing
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the load from 50% to 55% increases the waiting time by 10%, but increasing the load
from 90% to 95% increases the waiting time by 100%! This explains why a minor change
(for example a small increase in the number of patients) can result in a major increase in
waiting times as sometimes seen in outpatient clinics. Formulas such as (2.2) allow for
an exact and fast quantification of the relationships between (influencable) parameters
and system outcomes. Queuing theory is a very valuable tool to identify bottlenecks
and to calculate the effect of removing them.

We conclude this subsection with a basic queuing network: the A//M /1 tandem queue.
In this network we have two queues with exponential service, which are placed in se-
ries. Patients arrive at the first queue according to a Poisson process with rate \. When
the service at the first queue is completed, the patient is routed immediately to the sec-
ond queue. Upon service completion at this queue, the patient leaves the system. At
both queues the service discipline is FCFS, and there is an infinite waiting room (see
Figure 2.3). It can be shown that the mean sojourn time in the entire system, E[IV], is

Figure 2.3: The M /M/1 tandem queue

.. Service process Service process
Waiting room

Arrival process ®
— —

Queue 1 Queue 2

Waiting room

just the sum of the mean sojourn times of the two queues when considered separately,
which is E[W;] for queue j:

E[W] = E[W1] + E[W), (2.3)

since the departure process from each queue has the same characteristics as its input
process. This remarkable result can be generalized to larger networks of queues, as is
shown in Subsection 2.3.1.

2.1.2 Queuing Networks in Healthcare

When patients share and use multiple resources, a queuing network usually arises. Con-
sider, for example, a patient that visits the Orthopedic outpatient clinic and then needs
to have an X-ray at Radiology; or the surgical patient who is operated in the OR, then
cared for at the Intensive Care Unit (ICU) and subsequently cared for in a nursing ward.
The formulation and analysis of these queuing network models is usually not straight-
forward. This likely explains why (discrete-event) simulation [121] is a commonly used
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approach to analyze healthcare problems. Simulation models are robust in terms of the
setting they can represent, however they are very time consuming to develop and re-
quire a vast amount of data (-analysis). Also, the resulting model is, with a few excep-
tions, not generic and thus not suitable to represent other problems or organizations
other than the one it was built for.

In this chapter we describe how queuing theory, and networks of queues in particular,
can be invoked to study, analyze and solve healthcare problems. In Sections 2.2 and 2.3
we provide an introduction to the theory of queues and queuing networks. In Section 2.4
we give a review of the literature on the topic. In the last section we suggest directions
for further research. Given the numerous modeling opportunities of queuing networks,
many difficult healthcare problems can, and hopefully will, be solved in the future. The
literature references on applications of queuing theory in healthcare are included in the
categorized ORchestra bibliography [145], provided by research institute CHOIR from
the University of Twente, Enschede, the Netherlands.

2.2 Single Queues

In this section we discuss several basic queues. We start by introducing the Poisson
process, which is a basic element in many queuing systems. We then proceed to the
building blocks for the networks: the individual queues.

2.2.1 The Poisson Process

As mentioned in Subsection 2.1.1, the Poisson process is commonly used to model the
arrival of customers to a queue, and in general to model independent arrivals from
a large population. As an example, consider patient arrivals at an ED. They originate
from a large population (the demographic area surrounding the hospital) and usually
arrive independently. The probability that an arbitrary person has an urgent medical
problem is very small. Then the arrival process tends to a Poisson process.

The Poisson process is common in real world processes and has many interesting and
very useful properties for analysis. For example, the number of ticks a Geiger counter
records is a Poisson process. This example also indicates that merging or splitting Pois-
son processes independently results in Poisson processes, as this corresponds to joining
two lumps of radioactive material or breaking one lump into parts. Or, for the popula-
tion example, ED arrivals from a population subgroup (men, women, children, ...) are
also Poisson.

For a Poisson process, the time between two successive arrivals is exponentially dis-
tributed. A very important property of the exponential distribution is that it is mem-
oryless: the probability that the inter-arrival time exceeds v + ¢ time units, given that



16 CHAPTER 2. QUEUING NETWORKS IN HEALTHCARE SYSTEMS

it already has exceeded u time units, equals the probability that the inter-arrival time
exceeds ¢ time units. Mathematically, a random variable X that has an exponential dis-
tribution satisfies:

P(X>u+t|X >u)=P(X >t), Vu,t>0. (2.4)

We may also rephrase this property as: what happens in the future is independent of
what happened in the past. Because of this Markovian or memoryless property, the
complexity of analyzing systems with this property significantly reduces, as we show
in the subsequent subsections.

Little’s Law

The simple relationship E[L] = AE[WW], presented in 1961 by ].D.C. Little [127], is known
as Little’s Law. It relates the mean number of patients in the queue, E[L], the average arrival
rate, A, and the mean time the patient spends in the queue, E[W].

A common intuitive reasoning for obtaining Little’s Law is the following. Suppose patients
pay 1 Euro for each time unit they spend in the queue. On average, the queue receives E[L]
Euro per time unit, since there are on average E[L] patients present in the queue. Alterna-
tively, if each patient would pay upon entering the queue for its entire time spent in the
queue, a patient would on average have to pay E[W] to finance the entire stay. Since each
time unit on average A patients enter the queue, the amount received by the queue per time
unit then equals AE[W]. Both methods of payment must result in the same benefit for the
queue, thus E[L] = AE[IV]. The formal proof actually follows the lines of this reasoning. It is
remarkable that Little’s Law requires only mild assumptions on the system in equilibrium,
and is valid irrespective of the number of servers, distribution of the arrival and service
processes, queuing and service order. Thus Little’s Law applies to many types of queues.

2.2.2 Basic Queues

We introduce the most commonly used queues: single and multi-server queues with
Poisson arrivals and exponential or general service times. Unless mentioned otherwise,
we consider the FCFS service discipline and queues with infinite capacity for waiting
patients.

The M/M/1 Queue

Inan M /M/1 queue, patients arrive according to a Poisson process with rate A and expo-
nentially distributed service requirement with mean service time E[S]. The service rate
per unit time is p = ﬁ, the number of patients that would be completed per time unit
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when the system would continuously be serving patients. As denoted in Section 2.1.1,
the load of the queue is p = AE[S], where it is required that p < 1, that is, the amount
of work brought into the queue should be less than the rate of the server. The number
of patients present in the queue at time ¢, i.e., those waiting in line and in service, is
obtained from Markov chain analysis.

Let N(t) record the number of patients in the system at time ¢. Then N = (N(t),t > 0)
is a Markov chain with state space Ny = {0, 1,2, ...}, arrival rate A, which is the rate at
which a transition occurs from a state with n patients to a state with n + 1 patients, and
departure rate i from state n to state n — 1. We are interested in the probability P, that

Figure 2.4: Transition rates in the M /M /1 queue
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at an arbitrary point in time in statistical equilibrium the system contains n patients':
P, = tlim P(N(t) =n). (2.5)
—00

The probability P, also reflects the fraction of time that the system contains n patients.
The total probability may be seen as an amount of fluid of total volume 1 that is dis-
tributed over the states of the Markov chain and flows from state to state according to
the transition rates (for the M/ /M /1 queue the arrival and departure rates). The system
is in statistical equilibrium when these flows out of state n balance the flows into state
n for each state n, n = 0, 1, 2, .. . (see Figure 2.4). Mathematically, this is expressed as:

APy = /Lpla
A+wh = AR+ pb,
()\"‘,LL)PQ = )\Pl—F/LPg,

(2.6)
and in general:
ARy = ph,
A+ w)P, = AP, 1+ puP,yy for n>0. (2.7)

'We consider the system in statistical equilibrium only, as is a standard approach in classical queuing
theory. For the M /M /1 queue, relaxation or convergence to equilibrium usually occurs fast. See [79] for a
discussion on the validity of equilibrium analysis.
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Since P, is a probability, the summation of all probabilities F,, n = 0, 1, .. ., should equal
unity:

f: P, =1 (2.8)
n=0

Using equation (2.7) and this additional property, we derive the queue length distribu-
tion P,,:

PO = 1_p7
P, = (1—=p)p" for n>0. (2.9)

Note that P, also called the normalization constant, denotes the probability that there
are zero patients present, but also the fraction of time the queue is empty. Further, p is
the probability there are one or more patients present, and the fraction of time the queue
is busy.

The PASTA Property

In a queuing system with Poisson arrivals, the probability that an arriving patient finds
n patients in the queue is equal to the fraction of time the queue contains n patients. This
property is referred to as PASTA, or Poisson Arrivals See Time Averages [203].

Usually, queuing systems with non-Poisson arrival processes do not conform to this prop-
erty. For example, consider the D/D/1 queue with deterministic inter-arrival and service
times. Time is equally distributed in slots of length one, and the service time is half a slot.
Suppose that at the start of each time slot a patient arrives (so the inter-arrival time is one
slot). Then the queue is empty upon arrival for all patients, while half of the time the queue
contains one patient.

The mean number of patients in the queue, E[L], including those in service, is given by:

E[L] = nP, = Tpp' (2.10)
n=0

Since p is the mean utilization rate of the server, the mean number of patients waiting,
E[LY], equals:

E[L) =L —p= L (2.11)
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Using Little’s Law, the relationship between the mean number of patients in the queue,
E[L], and the mean sojourn time, E[IV], can be explicitly quantified as follows [127]:

E[L] = AE[W]. (2.12)

This also holds for the relationship between the mean number of patients waiting for
service, E[L?], and the mean waiting time in the queue, E[WW:

E[L1] = AE[W1]. (2.13)

Note that the equilibrium distribution and performance measures are characterized by
the single parameter p and can be calculated in a straightforward manner. As we will
see in the subsequent subsections, this is more involved for more complicated queuing
systems.

The M/M/s Queue

The M /M /s queue is the multi-server variant of the M /M /1 queue. Patients arrive with
rate )\, each patient is served by one server and a patient waits in queue when all servers
are occupied. There are s servers so that the maximum service rate of the queue is sy,
where 1 is the service rate of the individual servers. If the number of patients in the
queue, n, is less than the number of servers, s, the service rate equals nyu (see the tran-
sition rate diagram in Figure 2.5). Again it is required that the amount of work that

Figure 2.5: Transition rates in the M /M /s queue
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arrives per time unit (p) is less than the maximum service rate, i.e., p = AE[S] < s. The
equilibrium distribution is obtained from:

APy = phy,
A+nu)P, =AP,1+(n+1)pP1  for n<s,
A+ su)P, = AP, + suP,iq for n>s.

(2.14)



20 CHAPTER 2. QUEUING NETWORKS IN HEALTHCARE SYSTEMS

Thus
" ! for 0<n<
Po=-"—p, where mn)={" or Tenss (2.15)
m(n) s"ssl for n > s.
Invoking the normalization condition (2.8), we obtain:
s—=1 4 s -1
P0:< L L_° ) . (2.16)
et n!  sls—p

For s = 1, equations (2.15)—(2.16) reduce to the queue length distribution for the M /M /1
queue (2.9). The probability P, deserves special attention; this is the fraction of time all
servers are occupied, and because of the PASTA property, also the fraction of arriving
patients that find all servers occupied. Thus the probability that a patient will be served
immediately upon arrivalis 1 — 3. P, = 3" P,, and the probability that a patient
has to wait is >~ P,. The latter probability can be calculated using the Erlang-C for-
mula [84]:

P.=Pn>s)=2_"p (2.17)

B —Es—p

There are several Erlang-C calculators available online to compute P+, see e.g. [70] and
[197]. The mean number of patients waiting for service is:

[e.e]

E[L] = ) (n—s)P, = P+ . (2.18)

S—p

n=s+1
By applying Little’s Law we find the mean waiting time:

E[W] — E[fq] | (2.19)

The mean sojourn time is then obtained by adding the mean service time to the mean
waiting time:

E[W] = E[S] + E[W4]. (2.20)

The mean number of patients in the queue can be calculated by adding the mean num-
ber of patients in service, p, to the mean number of patients waiting [84]:

E[L] = p+ E[LY). (2.21)
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The M/M/s/s Queue

The M/M/s/s queue, or Erlang loss queue, is different from the M /M /s queue in that
it has no waiting capacity. Thus when all servers are occupied, patients are blocked
and lost (i.e., they leave and do not come back). This type of queue is very useful when
modeling healthcare systems with limited capacity, where patients are routed to another
facility when all capacity is in use. Examples are nursing wards and the ICU. Figure 2.6
gives the transition rates for this queue. We obtain:

APy = phy
A+nu)P, =AP,1+(n+1)pPy1  for 0<n<s
AP,_1 = suPs,
(2.22)
with solution:

p"/n!

P, = — for 0<n<s, where p=\E[S]. (2.23)
;}p"/ i!

Surprisingly, (2.23) also holds for general service times (the M/G/s/s queue) and is
thus insensitive to the service time distribution [84]. The probability that all servers are

Figure 2.6: Transition rates in the M /M /s/s queue
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occupied, is often called the blocking probability, and is given by:

S /gl
p Pl (2.24)

Formula (2.24) is often referred to as the Erlang loss formula, or Erlang-B [84]. For large
s, the direct calculation of P, by using (2.24) often introduces numerical problems. The
following stable recursion exists where these problems are avoided [211].
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Recursion for Erlang-B

Step 1.
Set Xo =1.
Step 2.
For j =1,...,s compute
X, =1+ X1 (2.25)
p
Step 3.
The blocking probability P; is given by
P, = 1 (2.26)
=X .

Another option is to use one of the Erlang-B calculators available online, see e.g. [150]
and [197]. The performance measures are given by:

E[L] =p(1—P,), EW] =E[9] (2.27)

As we have seen in this subsection, the computation of the blocking probabilities can be
quite involved. The infinite server, or M /M /oo queue, is often used to approximate the
M/M/s/s queue for a large number of servers. In this queue, upon arrival each patient
obtains his own server. The queue length has a Poisson distribution with parameter p,
where p = AE[S], and is thus given by

P* = R, where Pr=c". (2.28)
n.

The blocking probability for the system with s servers is approximated by [187]:

P, ~ i P, (2.29)

n>s

Queues with General Arrival and/or Service Processes

For the M /M /s queue a single parameter suffices to calculate the queue length distri-
bution and related performance measures. However, assuming exponentiality of the
distributions involved in a queuing process is not always a valid choice. When the co-
efficient of variation is not close to 1 (the value for the exponential distribution) other
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probability distributions should be used to obtain reliable outcomes, since the variance
of the inter-arrival and service times has strong influence on the performance measures.

Results for non-exponential systems are scarce and are often characterized via the scv,
¢?. In general, when the scv increases, the variability in the related queuing system also
increases. In this subsection we will focus on results for mean waiting times. Additional
results are given in the books [84], [187] and [203]. The software package QtsPlus that
accompanies [84] supports the calculation of many relevant performance measures, is
free available online [159] and implemented in MS Excel, but also has an open source
variant.

For the M/G/1 queue the Laplace-Stieltjes transform for the waiting time distribution
is known. From this result, we obtain the Pollaczek-Khintchine formula [48] that char-
acterizes the waiting time in the single-server queue with Poisson arrivals and general
service times:

p 1+ ct
BV = Bisi - 1S,

(2.30)

where ¢ denotes the scv of the service time. The mean sojourn time for the G/M/1
queue is:

E[W] = : (2.31)

where ¢ is the unique root in the range 0 < o < 1 of the following equation:
o= A(u— po), (2.32)

with A the Laplace-Stieltjes transform of the inter-arrival time and p = ﬁ [203]. For
the G/G /1 queue the following approximation solution is often used [187]:

2 2
B[V ~ E[S]ﬁ%, (2.33)

where ¢ denotes the scv of the arrival process. This result includes the G/M/1 queue
and is exact for the M/G/1 queue.

It is hard to determine the exact effect of using the exponential distribution to represent
a non-exponential process. As a rule of thumb, we suggest that as long as the actual
variance is below that of the exponential distribution, then the exponential distribu-
tion provides a conservative estimate. In other words, the calculated expectations of the
queue length and waiting times will over-estimate the actual values. Such a conserva-
tive estimate is for instance useful when a strategic decision that does not involve a lot
of detail needs to be made.
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For the mean waiting time in the G/G/s queue the following approximation is very
useful [84]:

4+
EWY] ~ E[WE, /s)]%, (2.34)

where E[W{, /] denotes the mean waiting time in the M /M /s queue with identical
A and f. In [84] lower and upper bounds on E[I¥9] are also provided. Using the results
for E[W Y], Little’s Law can be applied to determine the mean number of patients in the
queues mentioned in this subsection.

Service Disciplines

So far, we have only discussed the FCFES service discipline. Other options are Processor
Sharing (PS) and Last Come First Serve (LCFS). We will elaborate on queuing networks
with these kind of queues in Subsection 2.3.2.

In the processor sharing service discipline, all arriving patients are immediately served,
thus there is no queuing. A single server is shared equally among patients, where each
patient class may have its own service requirement. For the M /M /1 — PS queue the
queue length distribution, P,, is identical to that of the M /M /1 — FCFS queue (2.9).
Intuitively, this can be explained as follows. The server works at rate y, and when there
are n patients in the queue, an individual patient is served with rate £. However, since
n patients are served simultaneously, the overall completion rate is still u (5 - n = p).
Since the patient arrival rate equals ), the flow in and out of the queue is identical to
that of the M /M /1 — FCF'S queue.

The M/M/1 — LCFS queue with preemptive resume can be seen as a stack, for in-
stance of patient files, where a single server (the doctor) works on the top item of the
stack. Whenever a new item is added, the server immediately starts working on this
item. However, when the server returns to the previous item, it resumes service (i.e., the
queue is work conserving). The queue length distribution is again given by (2.9), where
the same argument holds as for the M /M /1 — PSS queue.

Miscellaneous Queuing Results

In this subsection we briefly mention a couple other queuing results. Some of the re-
sults that can be obtained for G/G//1 queues are exact, but do not transfer to queuing
networks. In particular, the equilibrium distribution at arrival instants in the G/M/1
queue is:

P,=(1-0)o", (2.35)

with o defined as in (2.32).
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The equilibrium distributions of the M/G/1 queue and the G/M/1 queue at arrival
epochs have a geometric form. The queue length distribution of the M/G/1 queue at
departure epochs can be obtained using the theory of matrix geometric queues. At ar-
bitrary (non arrival or departure epochs) the equilibrium distribution of these queues
is not available in amenable form. To further characterize the equilibrium distribution
of these queues, we introduce the class of so-called phase type distributions [120]. A
distribution is of phase-type if it can be represented as a continuous time Markov chain
on the phases such that the chain remains in a phase during an exponential time and
jumps from phase to phase according to transition probabilities, see [120] for details.

It is interesting to observe that each probability distribution that attains positive values,
only, can be approximated arbitrarily closely by a phase-type distribution. Using phase-
type distribution for respectively the service time and inter-arrival time distribution,
the equilibrium distributions for the M/Ph,/1 and Ph,/M/1 queues are available in
closed form. For these queues, the state description requires the number of patients n
and the phase of the service or inter-arrival times r resp. s. The equilibrium distribution
is obtained in closed form:

P, =PRR", n=012,..., (2.36)

where F, and P, are r resp. s vectors over the phases of the service or inter-arrival
times and R is an r X r or s x s matrix over these phases. The result generalizes to
the Ph,/Phs/1 queue where P, and P, become rs vectors recording the joint phases
of inter-arrival and service times. Although the form (2.36) is geometric, obtaining the
matrix R is quite involved and goes beyond the scope of this chapter, see [119] for de-
tails. We specifically mention this queue since phase-type distributions are common in
healthcare. For example the LOS in geriatric care has been modeled using phase-type
distributions [66].

Instead of joining the queue, patients may be impatient and leave the queue before
service. When this happens upon arrival, it is called balking. When patients leave after
waiting some time, it is referred to as reneging. In the M /M /s/s queue it is assumed
that patients who are blocked are lost to the system. When blocked and/or impatient
patients return to the queue after some time, we have a retrial queue [84].

In this subsection we have considered only queues with a single class of patients. When
more than one patient class arrives at the queue, and classes have priority over one
another, we have a priority queue [203]. In the case of preemptive priority, the service
of the low priority patient is interrupted immediately when a higher prioritized patient
arrives. Afterwards, the service of the low priority patient is resumed (work conserving)
or may have to start allover again (work is lost). In the case of non-preemptive priority,
a patient that is already in service is completed first.

Vacation queues are a generalization of the M/ /G/1 queue, where the server may take a
vacation (i.e., becomes idle for a certain amount of time), also when there are patients
in the queue [203]. A generalization of the vacation queue is the polling model, where
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a single server visits multiple queues [182]. In this chapter we restrict our focus to net-
works of queues with continuous availability.

2.3 Basic Queuing Networks

Now that we have defined the building blocks, we can proceed to queuing networks.
We start with networks of exponential queues with either a single or multiple servers.

2.3.1 Networks of Exponential Queues
Tandem Networks

Consider a tandem network of J queues that are placed in series. All queues have infi-
nite waiting room, a single-server, and the service requirement at queue j, j = 1,...,J,
has an exponential distribution with mean service time E[S}|. Patients arrive at queue
1 according to a Poisson process with rate A\. Upon service completion at queue j the
patient routes to queue j + 1, j = 1,...,J — 1, and finally departs from queue J.

From Burke’s theorem [34] it follows that the departure process of a queue with Poisson
arrivals and exponential service times, is again a Poisson process with the same rate as
the arrival process, and that departures from queue 1 before time ¢, are independent of
the queue length of queue 1 at time ¢,. This fundamental result indicates that the queue
length at time ¢, in queue 1 and queue 2 are statistically independent. Hence, for the
tandem queue of Figure 2.3,

P(n1,ng) = P(N1 = ny, Na = na) = (1 — p1)pi" (1 — p2)ps?,  na,mg >0, (2.37)
where p; = ME[S], po = AE[S:], and N; is the random queue length at queue j in

equilibrium. Continuing this argument, for a tandem network of .J queues, we obtain
the so-called product-form solution [187]:

J
P(ny, .. H 1—p;)p’, where p; =AE[S)]. (2.38)
This elegant result leads us to Open Jackson Networks with general patient routing.

Open Jackson Networks

We now consider a network consisting of J single-server queues. The external arrival
process atqueue j,j = 1,...,J, is Poisson distributed with rate y,, 7; > 0 Vj. Each queue
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J has an exponentially distributed service requirement with mean service time E[S;].
Patients are routed from queue i to queue j with state independent routing probability
rij, 0 < 1y < 1,1i.e., a fraction r;; of patients served at queue i routes to queue j. The
parameter r;; denotes the fraction of patients leaving the network at queue i. The total
arrival rate \; at queue j is given by:

J

=1

and is composed of the arrivals to queue j from outside and inside the network. A
queuing network with these characteristics is called an Open Jackson Network, named
after James R. Jackson who first studied its properties in 1957 [100]. In Figure 2.7 an
example of an Open Jackson Network is given. According to Jackson’s Theorem [100],

Figure 2.7: An example of an Open Jackson Network with four queues and patient routing from
queues 1—2,1—3,2—3, and 3—4. External arrivals occur at queue 1, 3, and 4; departures occur
at queue 2, 3, and 4
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the product-form solution for this type of network is given by:

J
P(ny,...,ny) = H(l —pi)py’, m; >0, j=1,...,J, where p;=N\E[S)].
j=1

(2.40)
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The Power of Jackson’s Theorem

From Jackson’s theorem it follows that per queue only a single parameter, p;, is required
for the calculation of P(ny,...,ny). Consequently, only J parameters are required to ana-
lyze the entire network! This result is surprising since usually many parameters are required
to characterize a probability distribution. Note that the product form expression states that
the queues lengths are independent random variables at a specific point in time. This does
not imply that the queue length processes are independent.

Since the queues in the network act as if they are independent M /M /1 queues, the per-
formance measures are easy to compute:

E[L;] = 1f—jpj, E[W;] = . (2.41)

The mean sojourn time for an arbitrary patient can be calculated using Little’s Law:

5

E[L;]
EW] =" —. (2.42)
; Y

Note that this is not equal to ijl E[W}], since patients may not visit all queues in the
network or visit some queues several times.

Jackson’s result can be extended to the multi-server case. We obtain:

U]
P(?’Ll, ce ,TLJ) = pj P()j, where pP; = )\j]E[Sj],
o mlny
m(ﬂj) _ ’I”Lrjl'!is. for 0< n; < sj,
s;7 Vsl for mny > sy,
(2.43)
and s; > 1for j = 1,...,J. The normalization constant F; is given by
S]_l n; Sq 71
p.’ P’ s
P, = o4l J . (2.44)
P nl sl s —p;

n;=0
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Closed Jackson Networks

A Jackson Network where the external arrival rates 7; = 0 Vj and the departure proba-
bilities ;0 = 0 V4, is a called a Gordon-Newell or Closed Jackson Network, since patients
do not enter or leave (see Figure 2.8). The finite number N of patients that is present in

Figure 2.8: An example of a Closed Jackson Network with three queues and patient routing from
queues 1—2,1—-3,2—3, and 3—1

Iy

I3
—> :

I

X

the network is continuously routed among J queues according to the state independent

routing probabilities r;;. For the single-server case we obtain a product-form solution
[77]:

J J
P(ny,...,n;) = B(N)"'[[p)’, where > n;=N. (2.45)
j=1 j=1

In this formula B(N) is called the normalization constant. In the open network variant,
the expression H}]:1 (1 — p,) is actually the normalization constant and easy to compute.
In the closed network variant, B(XV) is given by:

J
BN = > ] (2.46)
Zj:1 nj=N j=1

Calculating B(N) can be quite cumbersome, even for small N. Buzen’s algorithm [36] is
very helpful in this case and works as follows.
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Buzen’s Algorithm
Step 1.
Define
Gj(k), where j=0,...,J and k=0,...,N, (2.47)

with initial values

Gik) = pf, G;(0)=1. (2.48)
Step 2.
Recursively compute

Gj(k) = Gj—1(k) + pjG(k—1). (2.49)
Step 3.

The normalization constant is given by:

B(N) = G(N). (2.50)

Buzen’s algorithm can also be used to compute other performance measures of interest.
The marginal probability that n; patients are present at queue j is given by:

P(nj) = B(N)™'p? (Gy(N = nj) = p;Gs(N —n; —1)). (2.51)
The mean number of patients present at queue j is given by:
Z py B(N)™'G (N —ny). (2.52)
n;=1

The Closed Jackson Network can also be extended to the multi-server case. The product-
form solution is then given by:

J
P(ns,....ng) = BN ]| mp] -, (2.53)

j=1

where Z}]:1 n; = N, m(n;) is given by (2.43), and

B(N) = Z H i (2.54)

_1nj=N Jj= 1
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For the multi-server case B(/N) can also be calculated using Buzen’s algorithm.

In a closed single-server Jackson network the mean waiting time and mean number of
patients at queue j can be calculated without evaluating B(N) [84]. This algorithmic ap-
proach is called Mean Value Analysis (MVA). We present the basic algorithm, but MVA
has been extended to many other queuing systems, see [3].

MVA Algorithm
Step 1.
Set A1 = 1 and solve the traffic equations:
J
)‘j = Z)\ﬂ’ij‘, ] = 1,...,J. (255)
i=1
Step 2.
Define L;j(0) =0forj=1,...,J.
Step 3.
Forn=1,..., N, calculate

Win) = (1+Lj(n—1))E[S;], i=1,...,J,

m(n) = %7
AjWi(n)
j=1
vi(n) = wnin)A; j=2,...,J,
Li(n) = vi(n)W;n), j=1,...,J (2.56)

Step 4.
The mean waiting time at queue j is given by:

E[W;] = W;(N). (2.57)
The mean number of patients at queue j is given by:

E[L,] = L;(N). (2.58)

2.3.2 Networks of Queues with General Arrival and/or Service Pro-
cesses

As said, the few exact results that exist for general queues cannot be transferred to gen-
eral queuing networks. However, many of the approximation results are. In this subsec-
tion we describe three types of networks that have an exact solution for the queue length
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distribution, namely networks with fixed routing, BCMP networks, and loss networks.
We conclude with the Queuing Network Analyzer (QNA). This is a generalization of
MVA for networks of G/G/s queues.

Networks with Fixed Routing

All of the queuing networks we have discussed so far employ Markovian routing. This
means that after departure, patients are routed to other queues or leave the network
with a certain probability. This excludes fixed routes in which patients follow a pre-
scribed path.

Consider a network in which each patient class has its own route. The route of patient

class k, k = 1,..., K, is given by the sequence of queues to visit before leaving the
system [104]:
r(k,1),r(k,2),...,r(k, H(E)). (2.59)

So in stage h, h = 1,..., H(k), patient class k visits queue r(k, h). Note that one queue
may appear multiple times in the route. Using this notation enables to include patients
that visit the same queue multiple times, but have a different destination depending on
the times the queue has been visited. An example route for a patient class could be 3 —
2 — 3 — 4, where queue 2 is visited after the patient departs from queue 3 the first time,
and queue 4 is visited after the patient departs from queue 2 the second time. This type
of queuing network can be seen as a set of intertwined tandem networks (Subsection
2.3.1). Each patient class is routed through its own tandem network of queues, and
different patient classes may meet each other at one of the queues.

Let 7, denote the arrival rate of patient class k. As a consequence of fixed routes, the
arrival rate of patient class k at stage i to queue 7(k, h) equals the arrival rate of the
patient class to the network. In order to be able to determine how many patients of class
k being in stage h of their route, are present at queue j, we have to record the position in
the queue for each individual patient. We introduce some additional notation. Let k()
denote the class of the patient that holds position ¢ in queue j, and let ;(¢) denote the
stage the patient is currently in. Then ¢;(¢) = (k;(¢), h;(£)) gives the type of this patient.
Since a patient may visit one queue several times, his type potentially gives more infor-
mation than his class. The state of queue j is given by the vector ¢; = (¢;(1),...,¢;(n;)),
and C' = (cy,...,cy) gives the state of the queuing network. Now if we define the pa-
rameter «;(k, h) as follows:

(k1) Vg it r(k,h) =7,
aj(k,h) = :
! 0 otherwise,

(2.60)
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where v; is given by A\;E[S;], and q; is the load of queue j:

T

K (k)
Z a;(k; h), (2.61)

k=1 1

T

then the marginal queue length distribution of the number of patients of class k, & =
1,..., K, present at queue j, is given by:

Pi(c;) = B;'T[ a;(kj(0),h;(¢)), where B;=> al. (2.62)
=1 n=0
The queue length distribution for the entire queuing network is then given by:
J
=1 &2e. (2.63)

j=1

The queue length distribution of the number of patients at the queues in the network is
given by:

J
P(ny,...,ny) = H(l — ). (2.64)

j=1
Note that this result does not discriminate among patient classes. Even though the no-

tation required can be quite cumbersome, networks with fixed routing introduce sub-
stantial modeling flexibility.

BCMP Networks

If each queue j in a network of J queues is one of the following types:
1. M/M/s — FCFS
2. M/G/1—-PS
3. M/G/1 — LCFS preemptive resume

4. M/G /o,
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an exact solution exists and the network is a BCMP network. It is named after the au-
thors Baskett, Chandy, Muntz and Palacios, who described it in 1975 [15]. The network
may be open or closed with multiple patient classes, and employ Markovian or fixed
routing. In the case of an open network, the external arrival rates to the queues are Pois-
son. For notational convenience, we give the product-form solution for a BCMP net-
work with Markovian routing and a single patient class. In this case the queue length
distribution is given by:

P(ny,...,n;) = B(N) ] P;(ny), (2.65)
j=1
where B(N) is the normalization constant such that >, P(n4,...,n;) = 1, and P;(n;)

is the equilibrium distribution for queue j, j =1, ..., J. If queue j is of type 1:

p
P.(n,) = —_pP. h
J(n3> m(nj> J(O>7 where
m<nj> _ TLZ!_S. for 0< n; < sj, and
s;” sl for ny > s,
s;—1 -1
— P P s
P;(0) = Ly L (2.66)
’ T; nl o sils; = p;
If queue j is of type 2 or 3:
Pi(nj) = p;'P;(0), where
P(0) = 1-p;. (2.67)
If queue j is of type 4:
Py’
P;(n;) = FPJ(O)7 where
j.
p(0) = e, (2.68)

Note that the four queue types include the service disciplines we discussed in Sub-
section 2.2.2. For BCMP networks the queue length distributions for these service dis-
ciplines are insensitive to the service requirement distribution, that is, only the mean
service times are required to obtain the equilibrium distribution (2.65).
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Loss Networks

A loss network is the multi-dimensional generalization of the Erlang loss queue (Sub-
section 2.2.2). In a loss network, patients simultaneously claim at least one server in at
least one queue. When upon arrival at the network one of the designated queues is full,
the patient is blocked and lost. Note that this kind of queuing network shows an anal-
ogy with some hospital processes. For instance, a patient that needs to be admitted to
the ICU after surgery, will not be operated on when there is no ICU bed available. Thus
the patient simultaneously claims an operating room and an ICU bed. If either one is
not available, the surgery will not commence.

For a loss network handling K patient classes, the queue length distribution of the num-
ber of patients of class k, k = 1,. .., K, is given by [105, 210]:

K N
P(ni,...,nx) = B(S)*H%, where 1€ S(S),
k=1 "

K
5(5) = {ne NO,ZAjknk <s;},

k=1

B(S) = Z H%T:V pr = ME[SK], (2.69)

nes(S) k=1

with )\ the arrival rate to the network of patients of class &, E[S;] the mean sojourn time
in the network, s; the number of servers at queue j and A;; the number of servers a
patient of class k claims at queue j. Loss networks are insensitive to the sojourn time
distribution. Various algorithms and approximations exist to obtain blocking probabili-
ties [105, 210].

The Queuing Network Analyzer

Despite the fact that many real world problems do not exhibit exponential service times,
open Jackson networks have been used in numerous applications, often with good re-
sults. However, to analyze networks of general queues, the Queuing Network Analyzer
(QNA) is a better alternative. The QNA was developed in 1983 by Ward Whitt [199] for
approximate analysis of open networks of G/G /s queues with FCFS service discipline.
There are several variations on the QNA, also known as reduction or decomposition
methods (see [35]). In this subsection we summarize the basic QNA algorithm.
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QONA Algorithm
Step 1.
Calculate the aggregate arrival rates at queue j, A;:

J
A=Y Airij. (2.70)
=1

Step 2.
Calculate the load of a server at queue j, ¢;:

NELS]
Sj ’

bs = 2.71)

Step 3.
Calculate the flow from queue i to queue j, A;;:

)\ij = Aﬂ"ij, (272)

and the fraction of arrivals at queue j that come from queue ¢, g;;:

Qj = Zj Qij:Tja (2.73)

where ¢o; denotes the fraction of external arrivals to queue j.

Step 4.
Calculate the scv for the arrival process at queue j, ¢ It

J
c1247j = aj—&-Zci’ibij, with

i=1

a; = 1+ wy QO]CUJ + Z Qz] ng + ng(z) xz) > (2-74)
where 3 ; is the scv of the external arrival process at queue j, and

zi=1+ )—1), (2.75)

with ¢ ; the scv of the service process at queue i. We have

bij = wigirij(1—¢7), = [1+4(1 - )% —1)]", and

J -1
n = [Zq%] - (2.76)
=0
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Step 5.
The mean waiting time at queue j, E[V}], is given by
2 2
Cp ;T €5
E[W;] = E[Whtynye] =5 (2.77)

The calculations involved with the QNA are usually straightforward and can be done
by hand. However, when the parameters need to be changed often, we suggest using
a spreadsheet program such as MS Excel. QtsPlus [159] also supports the analysis of
general queuing networks. Even though the QNA has proved to be very useful, other
approximation methods give better results when the network is highly congested (see
[35] for further reference).

2.3.3 State of the Art in Networks of Queues

Queuing theory traces back to Erlang’s historical work for telephony networks in 1909
[27]. The simplicity and fundamental flavor of Erlang’s famous expressions, such as his
loss formula for an incoming call in a circuit switched system to be lost (see Subsec-
tion 2.2.2) has remained intriguing, and has motivated the development of results with
similar elegance and expression power for various systems modeling congestion and
competition over resources.

A second milestone was the evolution of queuing theory into queuing networks as mo-
tivated by the product form results for manufacturing systems in the nineteen fifties
obtained by Jackson [100]. These results revealed that the queue lengths at nodes of a
network, where customers route among the nodes upon service completion in equilib-
rium can be regarded as independent random variables, that is, the equilibrium distri-
bution of the network of nodes factorizes over (is a product of) the marginal equilibrium
distributions of the individual nodes as if in isolation, see Subsection 2.3.1. These net-
works are nowadays referred to as Jackson networks.

A third milestone was inspired by the rapid development of computer systems and
brought the attention for service disciplines such as the Processor Sharing discipline in-
troduced by Kleinrock in 1967 [110]. More complicated multi-server nodes and service
disciplines such as First Come First Served, Last Come First Served and Processor Shar-
ing, and their mixing within a network have led to a surge in theoretical developments
and a wide applicability of queuing theory, see Subsection 2.3.2.

Queuing networks have obtained their place in both theory and practice. New techno-
logical developments such as Internet and wireless communications, but also advance-
ments in existing applications such as manufacturing and production systems, public
transportation, and logistics, have triggered many theoretical and practical results. The
questions arising in health care will no doubt again lead to a surge in the development
of queuing theoretical results and applications.
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Queuing network theory has focused on both the analysis of complex nodes, and the
interaction between nodes in networks. Many textbooks and handbooks include or are
devoted to queuing theory. Basic level textbooks include [180, 202], and more advanced
handbooks are [11, 84, 110, 111, 141, 165, 187, 203]. The state of the art in the mathe-
matical theory for queuing networks is described in the handbook [24]. Topics treated
include:

* A general theory for product form equilibrium distributions far beyond those for
Jackson and BCMP networks.

* Monotonicity and comparison results that allow analytical bounds on performance
measures for networks that slightly deviate from Jackson or BCMP type networks.

¢ Fluid and diffusion limits that aim at analyzing networks in the regimes domi-
nated by the mean or the variances of the underlying processes such as service
times and inter arrival times.

* Computational results that are far more general than the queuing network ana-
lyzer of Subsection 2.3.2.

In the last chapter an application of networks of queues in healthcare is presented, indi-
cating that many available theoretical results for networks of queues are waiting to be
disclosed for application in healthcare.

2.4 Examples of Healthcare Applications

As we have seen in the previous section, for some queuing networks that consist of only
exponential queues analytical solutions are available. When either the arrival or service
process is non-exponential, approximation methods are usually required. In this section
we provide several references to healthcare examples that involve queuing networks.
For examples that involve single queues, we refer to [78]. Generally speaking, three

Table 2.1: Categorization of references

Network type Exponential networks General networks
Healthcare facilities [9, 8, 20,112, 122] [1]

Departments within a facility [45, 46, 58, 147] [54]

Healthcare providers within a department - [4,47,101, 212]
Miscalleneous [43, 208] -

types of healthcare networks have been studied using queuing network topologies. We
distinguish between networks of healthcare facilities, networks of departments within
a facility, and networks of healthcare providers within a department (see Figure 2.9).
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Figure 2.9: Different types of networks in healthcare
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Using this network classification, and the distinction among exponential and general
networks, the references provided in this section can be categorized as presented in
Table 2.1.

24.1 Applications of Exponential Networks

Modeling a healthcare network with exponential queues gives a lot of insight into the
structural behavior, such as bottlenecks. The modeling power of these networks is great-
est when many of the details on patient behavior are not yet specified, but randomness
is an essential part of the behavior of the system, i.e., at the strategical level of allocation
of capacity, facilities and resources.
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Facility Location and Bed Blocking Problems

One of the earliest developments in this area is given in [20], where a network of
M/M/s/s queues is combined with an algorithm to determine the optimal location of
burn care facilities in the state of New York. The resulting system of equations can be
solved, but due to computational difficulties only for a small number of facilities and
beds. This type of network is further studied in [147]. The latter paper involves an exam-
ple where patients are routed through a network of operative and post-operative units
(such as the OR, ICU and nursing wards), and may experience bed-blocking when the
next unit on the route operates at full capacity. Also in this model the numerical compu-
tations remain problematic when there are numerous units and beds. The relationship
between the OR and bed availability on the ICU is further studied in [58], where the
authors use a loss network to determine the blocking probability for surgical patients
caused by a lack of ICU beds. The bed blocking problem is also considered in [112],
where the flow of psychiatric patients within a network of healthcare facilities is con-
sidered. A relatively simple steady-state analysis results in a product-form solution. The
capacity planning problem for neonatal units (how many cots to place at each care unit)
is analyzed in [9] using a loss network model. The implementation of the solution is
described in [8].

Patient Flow

Modeling patient flow has received limited attention [189]. Patient flow between differ-
ent hospital departments is studied in two papers by the same author. In [45] the patient
flow from the ED to the ICU and nursing wards is studied using an open Jackson Net-
work. The same methodology is used in [46] to analyze flow of obstetric patients. Patient
flow within a care facility is studied from another perspective in [43] and [208]. In these
papers, different phases in the care trajectory of a patient are considered. While in [43]
a closed queuing network is used, in [208] the model is extended to a semi-open queu-
ing network with a capacity constraint (the maximum number of patients that can be
admitted).

Clinical Capacity Problem

Patients with renal failure are considered in [122]. These patients either receive dialysis
at a clinic, or when their condition worsens, (temporarily) hospitalized. A multi-class
open queuing network with two queues (the clinic and the hospital respectively) is used
to determine the clinic’s capacity and the maximum number of patients to be admitted
into the clinic, given that patients do not use clinic resources when they are hospitalized.
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2.4.2 Applications of General Networks

When a higher level of detail is required, for example when networks of healthcare
providers withing a department are studied, models with general queues are of more
value.

Organization of Acute Care

The organization of acute care is studied in [47] and [101]. In [47] an ED is modeled
with a multi-class open network of M /G /s queues. The main purpose of this model is
to determine the required ED capacity needed to achieve service targets such as waiting
time and overflow probabilities. In [101] the same kind of network is used to model
an urgent care center, which is basically an outpatient clinic that delivers ambulatory
urgent care to relieve pressure from the ED. The main goal of this model is to determine
whether parallelization of tasks in the patient’s care trajectory has a positive effect on
the patient’s LOS at the urgent care center.

Other Applications

In [54] hospital departments and their interdepartmental relationships are modeled as
a network with G/G/s queues. Analysis of the network gives relevant information such
as utilization rates and mean waiting times for each queue, and also allows for explor-
ing the impact of service interruptions, aggregating patient flows, and determining the
optimal number of patients in a clinic session. Another application is the recent out-
breaks of viruses, such as the HIN1 influenza virus, which call for a rapid response of
the authorities. In [1] the authors show how a queuing network can help to plan emer-
gency mass dispensing and vaccination clinics. In [4] and [212] two outpatient clinics are
studied using the Queuing Network Analyzer. The papers demonstrate how queuing
networks can be of added value when performing bottleneck analysis.

2.5 Challenges and Directions for Future Research

In the last decade the number of healthcare problems that have been studied using a
queuing network approach has increased tremendously. Except for [4] and [20], all of
the references included in Section 2.4 were published in the years 2000-2010. In this
final section we point out a few directions for future research. We distinguish between
mathematical challenges: healthcare problems for which appropriate queuing network
models have not yet been developed, and healthcare challenges: healthcare problems
which have not been studied yet, but could be studied with the queuing techniques
available in literature.
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2.5.1 Mathematical Challenges

The mathematical challenges mainly lie in the modeling aspect. One example is the
development of models for networks of care providers who perform several tasks in
parallel, in sequence, and sometimes even in a mixed form. Polling models [182] could
be of interest here. Also, clinics where patients have to (re-) visit specific care providers
in a network of care queues still involve modeling complications. However, re-visiting
occurs often in reality (consider for example the complex network of multiple care
providers in ED treatment).

The application of time inhomogeneous models that capture the time-dependent ar-
rival patterns of patients has attained only limited attention, see for example [83]. Intro-
ducing time inhomogeneity in queuing networks is a tremendous challenge. Related is
the development of computationally efficient methods that explicitly take into account
opening hours of healthcare facilities.

2.5.2 Healthcare Challenges

Healthcare professionals in a couple of fields are familiar with the possibilities of mathe-
matical decision support techniques in general and queuing theory in particular. As we
have seen in Section 2.4, modeling networks of healthcare facilities, departments and
care providers has received some attention. However, capturing the complex relation-
ships between hospital departments has proved to be quite involved. The relationship
studied is usually that with a downstream department [189], while that with upstream
departments is not considered, even though it can be of significant influence.

Our aging population requires more and more care, which has to be delivered with lim-
ited resources. Rationing care and the consequences thereof has therefore become an
important research topic. Decisions regarding which patient class will be offered what
type of care are inevitable. The influence of these decisions on other patient classes,
regarding accessibility and other important matters, should be studied in detail. More-
over, the dimensioning of healthcare facilities, not only in the number of beds required,
but also regarding care that will be offered to certain patient classes only, will become
increasingly important.

This chapter has provided a thorough theoretical background on networks of queues
and examples of how networks of queues may be used to model, analyze and solve
health care problems. In that respect, often, the theory has to be amended or extended.
We are confident that this contribution has made health care professionals increasingly
aware of the possibilities and opportunities queuing networks have to offer to tackle the
challenges they are facing, now and in the future.
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Chapter 3

Redesign of the PAC

3.1 Introduction

In the past two decades, it has become common practice to provide preoperative screen-
ing in an outpatient clinic setting [49, 125, 155]. Lee [123] was the first to outline the
concept of the preanesthesia evaluation clinic (PAC). He stated that the purpose of the
preoperative screening process is ‘to examine and treat the patient, so that he will arrive
in the operating theatre as strong and as healthy as possible’, a definition that still ade-
quately defines the process. Today many hospitals operate a PAC [155]. An accurately
performed screening reduces the risk of cancellation on the day of surgery due to the
physical condition of the patient [67], increases the rate of same-day admissions and
reduces peri-operative morbidity, resulting in decreased costs and increased quality of
care [109, 149].

Congestion is a common phenomenon in outpatient clinics [55, 62, 86]. Patients arriving
for a preoperative screening are usually not categorized and therefore the consultation
time needed per patient is difficult to estimate. This increases the complexity of the PAC
organization as compared with a regular outpatient clinic. In our PAC at Leiden Uni-
versity Medical Center, patient waiting times and LOS (in this case the total duration
of one clinic visit) were initially significantly shorter than in a comparable clinic [64],
but these increased dramatically after introduction of an electronic patient data man-
agement system, since together with the information system additional administrative
activities were introduced. Also, the workload of the staff increased, leading to multi-
ple complaints about work stress. The prolonged waiting times, together with the low
level of job satisfaction for clinic employees, called for an evaluation of alternative clinic
designs. The aim of this study was to explore possibilities for a more efficient operation
of our PAC organization. Since all patient movements within the PAC were logged, we
chose to use mathematical techniques to analyze performance.

The major advantage of mathematical modeling is the possibility to execute a thorough
analysis of a system, while having no impact on the system itself. Using our mathe-
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matical model, we investigated the effect of various designs on selected performance
measures, such as patient LOS and staff utilization rate (the fraction of time clinic staff
is occupied with patient related activities). One of the alternative designs we considered
was regarded as superior to the initial design by the clinic staff. This design was imple-
mented at our PAC in 2007. Following the intervention, an unexpected increase of 16%
in patient visits in the first quarter of 2008 occurred. However, this did not cause a signif-
icant increase in waiting times, and in addition resulted in a decrease of employee costs
per patient. Furthermore, the time needed to approve a patient for surgery decreased,
and employee satisfaction increased. This chapter describes the redesign process and
provides directions for other PAC managers.

The present study is based on a queuing modeling approach. Simulation is a more com-
mon approach in this area. Already in 1952, Bailey used Monte-Carlo Simulation to an-
alyze appointment systems for outpatient clinics [14]. Since then, simulation has been
used extensively for the study of outpatient clinics. Within the scope of the PAC, simula-
tion was used to analyze the capacity needed to shorten the waiting list [64] and to study
the design of appointment systems for the PAC to minimize patient waiting times [55].
The queuing modeling approach we employ in this study requires only mean and vari-
ance of consultation times and patient arrival processes, and no further assumptions on
the underlying distributions. Due to the careful analysis required prior to the formula-
tion of the equations used in the model, a robust insight in the underlying relationships
of the system is obtained. As can be seen in Section 3.5, the queuing model presented in
this chapter consists of several related formulas that can be entered into a spreadsheet.
It enables a bottleneck analysis of the processes at the clinic and can easily be adjusted
so that it represents one of the alternative designs considered in the redesign process.
It is also possible to adjust the model so that it represents a preanesthesia clinic at an-
other hospital. Applications of queuing theory in outpatient clinic settings are scarce.
The majority of papers published on this matter are covered by Preater in his extensive
bibliography on queues in health [156].

3.2 Methods

3.2.1 [Initial service of the PAC

The study was performed at a university hospital preanesthesia evaluation clinic, with
approximately 6000 patient visits annually. A majority of patients were seen on walk-in
basis (about 70%), and the remaining on appointment basis. Walk-in patients arrived
directly from surgical outpatient clinics within the hospital. Only ASA I or II patients
were evaluated on walk-in basis, since for ASA III or IV patients more time for patient
contact and additional information from other specialists was often required (see [7] for
more information on the ASA classification system). It was clinic policy to maximize
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the number of walk-in patients, although at the same time these patients posed an un-
certain demand on clinic resources. Although less than 10% of patients were classified
ASA III or IV and therefore required an appointment, 30% of all patients were given an
appointment. When walk-in patients were deferred to an appointment, it was usually
because of overcrowding in the waiting room.

3.2.2 Resources and Tasks

The clinic was run by the department of Anesthesiology, with four anesthesia care
providers attending: one staff anesthesiologist, two residents, and a nurse practitioner,
supported by a secretary and two clinic assistants. The screening process consisted of
at most three steps: an intake at the secretary and two separate contacts with the clinic
assistant and anesthesia care provider respectively. All patients would see the secretary
and anesthesia care provider, only adults were seen by the clinic assistant. Patients re-
turned to the waiting room between visiting each care provider (see also the diagram
in Figure 3.1). Based on a form completed by the referring specialist, the secretary de-
cided whether the patient could be assessed immediately or during an appointment at a
later time. Since the secretary is not equipped to make decisions regarding the medical
status of the patient, this procedure resulted occasionally in patients receiving an ap-
pointment they did not need and vice versa. If the patient received an appointment, the
time interval, usually one or two weeks, was used for back-office activities to complete
the patient’s file. Walk-in patients were approved for surgery by the anesthesia care
provider during their visit. The staff anesthesiologist performed the back-office activi-
ties, consisting mostly of processing additional patient information that was required to
finish the case of appointment patients. Because the staff anesthesiologists also served
as backup manpower for the front-office activities, they experienced significant work
stress. Furthermore, the anesthesia care providers were unhappy because complicated
cases had to be finalized by an anesthesia care provider who had not seen the patient
initially, which ultimately may result in an incomplete understanding of the medical
condition of the patient [73].

3.2.3 Using Queuing Theory to Analyze PAC Performance

The initial and alternative designs were compared with a multi-class open queuing net-
work model (for a detailed description see Section 3.5). An advantage of this queuing
model is that only the first two moments (mean and standard deviation) of the arrival
and service time distributions are needed in the calculations. This allows usage of all
possible types of distributions, including empirical distributions. For the comparison
two performance measures were calculated with the queuing model, namely patient
LOS and employee utilization rate (p). In the recent work by Jiang and Giachetti [101],
the authors briefly describe a survey held at their outpatient clinic. From the survey it



48 CHAPTER 3. REDESIGN OF THE PAC

Figure 3.1: Diagram of clinic operations
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followed that patients considered the waiting time, being an important contributor to
the LOS, as very important and unsatisfactory long. Other aspects, such as the consul-
tation with the anesthesia care provider and the clinic assistant, also contribute to the
patient’s contentment on the clinic visit [63]. Employee utilization rate, p, and the pa-
tient’s waiting time to see this specific employee, E[1V], are related (see equation (2.2)).
Knowledge of the utilization rate is essential, since increasing this factor when it is al-
ready close to one, by increasing either the arrival rate or the service time, will result in
a considerable increase of the waiting time.

3.2.4 Intervention

All parties involved felt that the situation at the PAC required an intervention. A work-
ing group was formed with representatives of all PAC employees. The working group
discussed the initial (i.e., the in place) design, and developed four alternative designs,
which are described in the subsequent paragraphs. When discussing the initial design,
the working group identified all relevant activities at the PAC and characterized the
order of these activities in the initial design in several flow charts. Ultimately the work-
ing group decided upon the planned design from the presented alternatives. Again, the
order of all activities in the new design was documented in several flow charts and
medical protocols. The queuing model results were used to guide the decision making
process and enabled a numerical comparison of the initial and alternative clinic designs.
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Alternative Design 1: Clinic Assistant Selects at Front Desk The clinic assistants were convinced
that many patients with an actual ASA III or IV score were assigned an erroneous ASA I
or II score by the secretary. These mis-categorized patients were then handled on walk-in
basis and consumed too much time in the office of the anesthesia care provider, resulting
in congestion in the waiting room. They suggested that one of the clinic assistants should
take over part of the front desk task from the secretary, while the other clinic assistant
performs measurements and blood sampling.

Alternative Design 2: Treat all Patients on Appointment Basis Demand for an outpatient clin-
ic’s services can be divided into two components: controlled (appointment patients) and
uncontrolled (walk-in patients) demand [164]. In the initial set-up most ASA I or Il patients
were seen as walk-in patients. In the second alternative all patients are deferred to an
appointment, since a clinic with an appointment-only system will always provide a better
service level with respect to patient waiting times, than a clinic that allows walk-in arrivals
[55].

Alternative Design 3: Reschedule Appointments Rising [164] suggested to schedule appoint-
ments such that they complement walk-in arrivals. This results in a more homogeneous
arrival pattern throughout the day. In the PAC under study the number of walk-in arrivals
was significantly lower in the early morning and on Friday afternoon. In this alternative
all appointments are scheduled in these periods.

Alternative Design 4: Regroup Employee Tasks and Amend Patient Flows In this alternative
the secretary accepts all patients; therefore all patients are seen by the clinic assistant on
their first visit. Clinic assistants are provided with protocols to aid in the decision whether
the patient can be seen immediately based on the extent of co-morbidity, contacts with
medical specialists and the requirement to obtain additional medical information prior to
the visit to the anesthesiologist. If the patient requires additional testing, these tests are
immediately performed and/or requested and the patient is deferred to an appointment,
scheduled when all additional information is available. Consequently, the patient can be
approved for surgery when the appointment takes place.

3.3 Results

3.3.1 Model Input

Data from all PAC visits recorded in the first quarter of 2007 was used to obtain input
parameters for the queuing model (n = 1492). For the analysis, patients were divided in
three separate classes: (1) children (<16 years old), (2) adult patients ASA Score I or 1II,
and (3) adult patients ASA Score III or IV. This classification was chosen since children
and adults have a different routing, moreover the three classes can be distinguished
with respect to how much time each requires in consultation with the anesthesia care
provider. An advantage of this classification is that it is similar to that used by clinic
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staff. Arrival rates for each patient class, and mean and standard deviation of the contact
time with the clinic assistant and anesthesia care provider were determined. Not all
registered contacts had complete data and therefore the records of 1293 patients (87%)
could be used for the latter part of the data analysis. The time patients spent with the
secretary was not recorded and therefore we used an estimate. The secretary was often
consulted by co-workers who inquire after the approval status of a particular patient,
either by phone or in person at the reception desk. The secretary was also responsible
for dealing with patient inquiries, either on the phone or in person. The anesthesia care
providers were often consulted by co-workers, the inquiries usually concerning their
other professional responsibilities. We estimated that regarding the time available for
direct contact with patients visiting the clinic for a consult, the secretary lost 50% and the
anesthesia care providers lost 33% due to these interferences. The values were obtained
by direct observation and interviewing the employees. Even though the aforementioned
tasks do not directly contribute to the patient’s visit at the clinic, they need to be done
and are part of the job in our hospital organization.

The number of arrivals per patient class was used to determine the distribution of pa-
tients among classes. We found that the majority of patients arrived between 10 AM
and 4 PM. Hence we focused our analysis on this interval and calculated the arrival
rate (3.73 patients/hour) by using patient arrivals recorded during this interval. We ob-
served that within this period, patients from all classes arrived in a homogeneously
distributed manner. This corresponds with the scv (see Subsection 2.1.1) of the arrival
process being equal to 1 for all patient classes. The arrivals of patients that were imme-
diately deferred to an appointment were not recorded. Assuming that all appointment
patients make their appointment at the reception desk, we calculated the arrival rate
of non-admitted patients by multiplying the admitted patient arrival rate by the ap-
pointment percentage for each patient class. A summary of input data is given in Table
3.1. Senior clinic staff members discussed and carefully checked all parameter values;
additionally they discussed and approved the queuing model design.

Table 3.1: Summary of input data; mean service time E[S] is in minutes

Patientclass N  App.% Arrivalrate Secretary  Clin.ass.  Anes. care prov.
(pt/hr) E[S]; SD[S] E[S]; SD[S] E[S]; SDIS]
Children 274 15 0.79 5.00; 5.00 - 24.30; 20.64
(n =274)
Adults 902 25 2.60 5.00;5.00 10.71; 8.97 27.24;17.26
ASA 1&II (n =711) (n =902)
Adults 117 78 0.34 5.00;5.00 16.31;14.20 52.05; 25.50
ASA TII&IV (n =86) (n =117)
Deferred to - - 1.04 2.50; 2.50 - -

appointment
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3.3.2 Comparison of Initial Design and Alternatives

Using the queuing model, we compared each alternative design with the initial design.
If necessary, input parameters were adjusted (see the list below for the modifications
per alternative and Section 3.5 for an explanation of the parameters itself).

Alternative 1 One clinic assistant moves to the secretary station (s = 1), no disturbance during
welcoming of patients (e; = 1).

Alternative 2 The secretary gives all patients an appointment the first time they arrive at the
PAC, thus the arrival rate increases (¢; = 3.73). We assume that appointment patients ar-
rive on time; i.e., patients are assumed to arrive on appointment basis with fixed and iden-
tical inter-arrival times, so as to analyze the maximal possible benefit of an appointment
scheme. Hence the standard deviation of the inter-arrival time equals zero for all patient
classes

2 _ 2 _ 2  _
(CA,2,1 =Cp31 = Ca41 = 0).

Alternative 3 Appointments are rescheduled outside the interval 10AM to 4PM, and therefore
the fraction of patients with an appointment is removed from the arrival rates
(Ca = 1.93, (3 = 0.07, ¢4 = 0.67).

Alternative 4 No patients are deferred to an appointment by the secretary (¢; = 0). Consul-
tation time at the secretary decreases with 2.5 min, because part of tasks are reallocated
to clinic assistants (E[S;1] = 2.50); consultation times at clinic assistants increase with
these 2.5 min and with an additional 2.5 min needed to determine upon additional testing
(E[S2,2] = 15.71, E[S3 5] = 21.31, we assumed that the ratio between expectation and vari-
ance of the contact time at the clinical assistants, and therefore the scv, remained constant).
We assume that appointment patients arrive on time. Therefore, the standard deviation of
the inter-arrival time equals 0, which results in an scv equal to 0 (0?47 51 = 6?47671 = 03477,1 =
0).

The performance measures we chose to compare were mean patient LOS (the total du-
ration of one clinic visit) and employee utilization rate. The initial design could be char-
acterized by a long mean patient LOS, caused by prolonged waiting times at the sec-
retary and later in the process, prior to the contact with the anesthesia care provider
(Table 3.2). These two care stations also had high utilization rates. Comparing the per-
formance measures of the initial design to those of the alternative designs lead to the
conclusion that all alternative designs, except alternative 2 (treat all patients on appoint-
ment basis) would result in a better overall performance. Once the model results were
available, the working group was consulted to make a decision on the next step to take
in the redesigning process. It was apparent to all members that the initial design could
not be maintained. The first alternative of relocating one clinic assistant to the secre-
tary’s station was not regarded as a valuable alternative, since the expected decrease
in patient LOS was minimal. Furthermore, patient waiting time at the remaining clinic
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Table 3.2: Results of analytical model; E[WW?] and patient LOS (LOS) (for the most common group

of walk-in ASA 1/1I patients) are in minutes
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Design Secretary  Clin. ass.  Anes. care prov. Patient LOS
p; EWI  p E[W1] p; E[W1]
Initial 0.68;19.20 0.28; 0.60 0.67;9.60 77.35
Alternative 1 0.34; 240 0.56;12.60 0.67;9.00 71.95
Alternative 2 0.90; 54.00 0.28; 0.60 0.67;9.60 107.15
Alternative 3 0.51; 9.60 0.18; 0.60 0.45;1.80 59.95
Alternative 4 0.38; 3.00 0.40; 2.40 0.67;9.60 62.95
Alternative 3+4 0.30; 2.04 0.40; 2.63 0.44; 1.60 54.22

assistant increased substantially, which was also undesirable. Based on the predicted in-
crease in patient waiting time at the secretary in alternative 2, which was caused by all
patients having to make an appointment first, and since introducing an appointment-
only system was regarded as patient unfriendly (in the sense of one-stop shopping)
by the working group, alternative 2 was eliminated. The working group members de-
cided to implement alternative 3 and 4, so that advantages of both alternatives were
included. The effects of combining alternatives 3 and 4 were again studied with the
queuing model (Table 3.2). The queuing model predicted that this intervention would
also result in an improvement. Supported by the results, all working group members
were convinced that implementing a combination of the two alternatives would yield a
better overall performance of the clinic.

3.3.3 Effect of Intervention

The new design was implemented in the summer of 2007. We compared actual mea-
sured times of total patient LOS before and after the intervention. To minimize seasonal
influences and to allow for learning effects, we used data from both the first quarter
of 2007 and 2008. Before the intervention, only one clinic assistant was present on Fri-
days. Since the intervention involved scheduling the majority of appointments on Fri-
days, one additional clinic assistant shift was now required. This caused an increase in
total employee capacity from 7.20 FTE (total costs: 109K Euros/quarter) to 7.87 FTE (to-
tal costs: 116K Euros/quarter, +6%). Before the intervention, the total LOS as obtained
from the measurements over a 90 day period (01/01/2007 - 03/31/2007) was on average
70.0 minutes for the entire patient group (95% CI : [62.8; 77.1]). After the intervention,
the total LOS as obtained from the measurements over a 91 day period (01/01/2008 -
03/31/2008) was on average 77.0 minutes for the entire patient group (95% CI: [70.6;
83.3]). Although the total LOS did not increase significantly, longer contact and waiting
times at the clinic assistant were measured (95% CI of increase in contact times: [5.5;
7.6], 95% CI of waiting times in 2007: [8.6; 25.1], 95% CI of waiting times in 2008: [25.8;
30.3]). Recall that not all patients see the clinic assistant and therefore the increase in to-
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tal patient LOS was less. The contact and waiting times at the anesthesia care provider
did not increase significantly (95% CI of increase in contact times: [-1.5; 1.5], 95% CI of
waiting times in 2007: [19.6; 26.9], 95% CI of waiting times in 2008: [19.8; 28.1]). In the
tirst quarter of 2008, 1737 patient contacts were registered during the opening hours
of the clinic, an increase of 245 patients (+16%) compared to the first quarter of 2007.
Dividing the total personnel costs by the number of patients for both quarters, we see
that personnel costs decreased from 73 to 67 Euros per patient (-8%). The percentage of
patients seen on walk-in basis increased from 72% in 2007 to 81% in 2008. Furthermore,
in 2008 the anesthesiologist needed 6.8 days to decide upon approving the patient for
surgery, compared to 7.9 days in 2007 (95% CI: [-0.3; 2.3]). The staff anesthesiologists
were responsible for finalizing the status of those patients for which new information
was obtained in the days or weeks after the patient had visited the PAC. After the in-
tervention this task was minimal (less than 30 minutes), as for most patients all rele-
vant information was available prior to the first visit to the attending anesthesia care
provider.

3.3.4 Validity of the Model

The average LOS of the most common group of patients (walk-in patients with ASA
Score I or II) measured at the clinic in the first quarter of 2007 (70.6 min) was slightly
less than predicted with the queuing model (77.4 min, -9%), and thus the queuing model
provided a conservative but close prediction of system behavior. When comparing the
average LOS for the same patient group measured in the first quarter of 2008 (77.9 min)
with the model’s prediction (62.2 min) we see that the model underestimated the LOS
with 25% (see Table 3.3). However, we found that in the new clinic design, the secre-
tary was not able to halve her consultation time, since her remaining tasks required
more time than expected prior to the intervention. If we incorporate this in the queu-
ing model, and use the original consultation time, we come to a LOS equal to 90.4 min
(-14%), and the queuing model again gives a conservative estimate. The validity of the
model outcomes highly depends on the parameter values.

3.4 Discussion

We demonstrated a queuing modeling approach that enables a fast and robust analysis
of PAC performance. The methodology can be applied to other preoperative screening
clinics as well. Given the queuing model results, the PAC was redesigned. This process
consisted of two parts, namely the re-scheduling of appointments to the early morning
and Friday, and the reassignment of tasks from the secretary to the clinic assistants. As a
consequence, all patients were seen on their walk-in visit by the clinic assistant. Patients
requiring more contact time with the anesthesia care provider or back-office activities
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were deferred to an appointment by the clinic assistant, scheduled when all required in-
formation was available. Literature about the re-design of hospital care is extensive [65].
However, the literature on re-design of outpatient and preanesthesia evaluation clinics
is limited. Some studies are dedicated to the design of appointment systems [55], others
concentrated largely on waiting times and patient satisfaction [64, 92]. The concept of
re-design by reallocating tasks at the outpatient clinic has received less attention.

A limitation of this study is that all outcomes of the queuing model were calculated un-
der the assumption of steady state behavior. The system under study will never reach
this equilibrium state, due to inhomogeneous patient arrivals and restrictive opening
hours. We used the queuing model solely for comparison purposes and not for predic-
tion of actual patient LOS and utilization rates, which further strengthened our confi-
dence in the followed approach.

The model enabled us to analyze the effect of increased pressure on the clinic. As men-
tioned in the results section, patient arrivals had increased with 16% in the first quarter
of 2008, compared to the same period in 2007. Nevertheless, empirical analysis showed
that patient LOS had only increased slightly. The model shows that the rise in patient
arrivals would have resulted in a tremendous increase in patient LOS and employee
utilization rate, if we had not changed the design of our PAC (Table 3.3). Under the 2008
data the initial design operates under high pressure, with an increase in LOS of 53%,
due to the 16% increase in patient arrivals. In the implemented design, due to increased
efficiency, the system operates under modest pressure, with an increase in LOS of only
15% (Table 3.3). This is in line with the relationship given in Formula (2.2), indicating
the typical relation between waiting time and load. By organizing the processes at the
clinic more efficiently, we reduced the load. Therefore, the increase in patient arrivals
did cause an increase in the load but only a slight increase in waiting time, and patient
LOS.

The majority of patients visiting our PAC are seen on a walk-in basis. Since patients

Table 3.3: Results of analytical model with 2008 data (arrival rates: children 0.87, adults ASA 1/1I
3.32, adults ASA III/IV 0.41, deferred to appointment 0.88); time is in minutes

Design Secretary  Clin. ass. Anes. care prov. Patient LOS
p EW  p, E[WY] p; E(W1]

Initial 0.81;38.24 0.35;1.46 0.83; 30.38 118.03

Alternative 3+4  0.37; 2.80 0.50;4.75 0.63; 6.70 62.20

have the opportunity to go straight from the surgical outpatient clinic to the PAC, they
are often able to finalize the entire preoperative preparation within one hospital visit
(one-stop shopping), avoiding multiple hospital visits. However, walk-in outpatient
clinics are notoriously more difficult to handle in terms of optimizing waiting times
for patients and peak pressures for anesthesia care providers. Dexter [55] states that the
best service walk-in PACs can provide will always be worse than appointment PACs.
The walk-in PAC requires more resources to have acceptable waiting times for patients
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[64], since more slack is required to deal with unexpected peaks in patient arrival. Ap-
pointment systems on the other hand deal with peaks in demand for PAC services by
building waiting lists. To allow for patients that need to be seen with some urgency,
these appointment-only outpatient clinics will usually have some unplanned time slots
(or add-on manpower). At the PAC under study, we use a system that allows both walk-
in and appointment patients. The decrease of back-office activities enabled the anesthe-
sia care providers to dedicate more time to patient contact. This explains how 16% more
patients could be seen without an increase in the number of anesthesia care providers.

3.5 The Queuing Model

To identify bottlenecks in the PAC’s operations, the clinic was modeled as a multi-class
open queuing network (see Figure 3.1). There were three patient classes: children, adults
eligible for direct (walk-in) screening, and adults requiring an appointment because of
their (more severe) health status. The PAC queuing network has three separate (con-
nected) queues, where the employees act as servers. Patients only enter the PAC through
the secretary queue, but may leave the system at any queue. The PAC queuing network
was analyzed using a decomposition method, based on the QNA (see Subsection 2.3.2).
This method consists of three steps. We first summarize our approach and then provide
a detailed description of the model with the corresponding formulas.

First, the multi-class network is reduced to a single class network. This is done by ag-
gregating all patient flows that enter a queue. Then the workload p is calculated for each
queue. This already gives significant and valuable information; recall that p is a measure
for the fraction of time employees are busy. In the next step, the single class open queu-
ing network is analyzed, where the mean contact time and scv of the joint arrival and
service processes at the three queues are deduced. In the final step the mean waiting
time per queue is calculated, using the variables that were derived in step 1 and 2.

The PAC queuing network consists of three queues. The secretary queue is a single-
server queue whereas the clinic assistant and anesthesia care providers are represented
by multi-server queues. Patients enter the queuing network via the secretary queue and
depart the system from any of the queues. Furthermore, if upon arrival at a queue an
employee is available patients are served immediately; otherwise they join the queue
and are treated on first come first serve basis. We use an approximate decomposition
method [19] that is based on the QNA to analyze the model. The model we will present
here is more involved than the initial QNA formulation as given in Subsection 2.3.2.
Practical situations can usually not be directly translated into an existing model. Instead,
the theory has to be amended and extended to represent reality. We will describe in
detail the changes we have made to the QNA algorithm.

First we introduce some notation. We denote by k a patient class, where k£ = 1 are pa-
tients deferred to an appointment by the secretary, £ = 2 adults with ASATor Il k = 3
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adults with ASA IIT or IV, and k£ = 4 are children. To evaluate the alternative clinic de-
sign, we also introduce k = {5, 6, 7} to represent patients (adults with ASA I or II, adults
with ASA IIT or IV, and children, respectively) who return for their appointment. We de-
note a queue with j, where j = 1,2, 3 resp. represents the secretary, clinic assistant and
anesthesia care provider.

Step 1.
The aggregated arrival rates at queue j are:
4+3d 3 4 7
M= Y M= Y A=Y (L—da)y+dd W (3.1)
k=1+d k=2 k=2 k=5

where ;, is the arrival rate of patient class k at queue 1, and qy, is the fraction of patients
of class k who are deferred to an appointment in the alternative clinic design. Since all
patients in the alternative design are seen by the clinic assistant during their first visit
at the PAC, the secretary does not defer patients to an apopintment, and patient class
k = 1 does not exist anymore. Also, the index £ = {5,6,7} only exist when the alter-
native clinic design is evaluated. We therefore introduce the binary variable d, which
equals 1 if the alternative clinic design is evaluated and 0 otherwise.

Step 2.
The load per patient class per server for queue 1,2, and 3 is:

e = WE[Ska] for k={1+d,...,4+43d},
ok = %E[Sk,z]é for k= {2,3},

¢3,k = ’}/kE[Shg] 1 + d(l — Cl,k)’ykE[Sk,g] L fOI' k= {2, Ce ,4 + 3d},

€383 €353

(3.2)

where E[S} ;] is the mean service time for patient class k at queue j. Since the secre-
tary is often consulted by other patients and co-workers while handling a patient at the
reception desk, an effective capacity e;, 0 < e; < 1, is taken into account when cal-
culating the mean time a patient spends at this queue. The anesthesia care provider is
often disturbed, but not while treating patients and therefore the effective capacity, e,
0 < e3 < 1,1is only used in calculating the load. These effective capacities are calculated
by using direct observations and interviews with the employees. The number of servers
(i.e. employees) at queue j equals s;. Adding the load over all patient classes gives the
aggregated load per server of queue j, j = 1,2,3:

4+-3d 3 4+4-3d
Gr=Y bk, 2= ok, D3= Y ba (3.3)
k=14+d k=2 k=2

For stability it is required that ¢; < 1 for all queues j.
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Step 3.
The flow from queue 1 to queue 2 or 3 and from queue 2 to queue 3 is given by:
3 4+3d 3
>_ (1 = dag )y > (1= dag)y > (1 = dag )y
A1 2 — k=2 ) )\1 3 = k=t ) )\23 - h=2
’ A ’ A ’ Ao

(3.4)

The fraction of arrivals at queue 3 that come from queue 1 or 2 is given by (note that
qi2 = 1):

4+3d 3
. (1 —dag)ys > (1 — dag) v
k=4 k=2
- 3= : 3.5
q1,3 s v 423 N (3.5)
Step 4.
The arrival process at queue 1 has scv, ¢ ;:
4+3d
021,1 = wq Z Qk,lc?thl +1—wq, (3.6)
k=1-+d

where ¢ ; , is the scv of the arrival process of patient class k at queue 1, and

_ A2
wy = (1 +4(1 = ¢1)*(m — 1)) 1, h = 4+3d1 v Q1= % 3.7)
9 1
> %
k=14d
The mean service time, E[S] and scv at queue 1, c%ﬁl, are:
4+3d 4+3d
> WE[Sk1] > WE[Skal(cy, +1)
Elg] — k=i 9 k=l+d 1 38
[ 1] )\1 ; 0571 )\1]E2[Sl] ) ( )

where c% ;. ; is the scv of the service time for patient class & at queue j. The arrival process
at queue 2 has scv, 2 ,:

C124,2 = )\1,262D,1 +1-— )\172, (39)
where ¢, , is the scv of the departure process at queue 1. Queue 2 has mean service time,

E[S,], and scv, 0?972:

3 3
> WE[Sk.2] > B[Skl (cBrs + 1)

k=2 k=2
E[SQ] = )\—2’ 02'72 = )\2E2 [52] — 1. (310)
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The arrival process at queue 3 has scv, ¢ 3

2 2 2 .

wy = (14401 — )2 — 1)), m= (25 +d5)

C%,:a = )‘1,30%),1 +1 = A3, 03,3 =(1- d)c%g + d()‘27302D,2 +1- )\2,3)7

2
Gy = 11— @Ay 1)+ -2 (2, 1), (3.11)

/52

where ¢3 5 is the scv of the patient flow from queue 2 to queue 3, ¢f 5 the scv of the patient
flow from queue 1 to queue 3, and ¢7, , is the scv of the departure process at queue 2.
Queue 3 has mean service time, E[Ss3], and scv, cg’gz

4

> (1 — day)vkE[Sk 3] 7

E[Sg] — k=2 )\3 + d Z ,Yk]E’[SkJ,SL

k=5
4 7
> (1 = dag) vk E?[Sks] (¢ s + 1) + 3 mE?[Sks](cips + 1)
2 k=2 k=5
_ 1
CS’3 >\3E2 [Sg]

(3.12)

Step 5.

We are interested in the waiting times for patients per queue and the load per employee
at each queue. The latter is given by the aggregated load derived in step 1, while the
mean waiting times are obtained by using the scv and mean service time calculated in
step 2. The mean waiting time, E[IW}], is equal for all patient classes.

Gatcg ¢ E[S

EW{] = 5 T 4 o
E[W]] = wE[Wf(M/M/S)], where
EW armys) = G5 1<Sjiji)sj sj(?[fij)zv
G, = ig(sf'j{)n+ (1(?523)5;! for j=2.3 (3.13)

Patient LOS for each patient class can now be calculated by adding the mean waiting
and LOS of all care queues the patient calls at on his visit to the PAC.



Chapter 4

Designing Cyclic Appointment
Schedules

4.1 Introduction

Developing appointment schedules for service facilities that process both scheduled
and unscheduled arrivals is challenging, as it requires planning and scheduling on dif-
ferent time scales. A well-designed appointment system comprises an efficient day ap-
pointment schedule and provides timely access. This chapter is motivated by challenges
faced by hospital outpatient clinics that serve patients on a walk-in basis. Most of these
clinics also have a limited number of appointment slots. There are various organiza-
tional (e.g., fixed slots for patients in a care pathway, patients with long travel time to
the hospital, children) and medical (e.g., local anesthesia or contrast fluid required) rea-
sons to give a patient an appointment. In this chapter, we introduce a method to design
appointment schedules for such facilities.

Advantages of a walk-in system are a higher level of accessibility and more freedom for
patients to choose the date and time of their hospital visit. Disadvantages are a possi-
ble highly variable demand and as a consequence low utilization and high waiting time.
The advantage of an appointment system is that workload can be dispersed, while it has
the disadvantage of a potentially long access time. Since prolonged access times result
in a delay of treatment, deterioration of health condition is a serious risk [140]. Allowing
patients to walk in effectively reduces access times to zero, and thus increases quality
of care. Additionally, healthcare facilities typically aim to guarantee a certain service
level with respect to the access time for patients with an appointment. The challenge
in a mixed system is thus to balance access time for appointment patients and waiting
time for walk-in patients. To achieve this, we develop a methodology that schedules
appointments when the expected walk-in demand is low. To smoothen the system, in
periods of high demand part of the walk-in patients is offered an appointment at a later
moment. Of course, this is undesirable since it increases access time and may involve an
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additional clinic visit. Walk-in demand [10, 47] and demand for appointments requests
[201] are often cyclic; therefore, we develop a cyclic appointment schedule. Appoint-
ment scheduling has received considerable attention in the literature, as opposed to the
development of models that relate access and waiting time [85].

The methodology incorporates unscheduled and scheduled arrivals and maximizes the
number of unscheduled patients served on the day of arrival, while satisfying a pre-
specified access time norm for scheduled patients. We model the unscheduled arrivals
with a stochastic non-stationary arrival process and incorporate balking behavior. The
scheduled patients have priority, may not show up, and appointment requests are as-
sumed to arrive according to a cyclic pattern. To account for the cyclic arrivals, the ap-
pointment schemes we develop are also cyclic, where the cycle is a repeating sequence
of days. The cycle length can, for instance, be a week or a month. The cyclic appoint-
ment schedule (CAS) specifies a capacity cycle (the maximum number of patients that
can be scheduled on each day of the cycle) and a day schedule (the maximum number
of patients to be scheduled per time slot on each day). Access time and waiting time
are measured on different time scales, since access time is counted between days and
waiting time during a day. To facilitate the two time scales, our approach consists of de-
composing the appointment planning process and the service process during the day.
For both processes we propose an analytical evaluation model. The first model deter-
mines the access time for scheduled patients for any given capacity cycle. The second
model determines the mean number of unscheduled patients that cannot be seen on the
day of arrival. The two models are linked by an iterative algorithm that stops when the
CAS is found in which the fraction of unscheduled patients seen on the day of arrival is
maximized, given that the restriction on the access time is satisfied. A numerical exam-
ple of a small problem instance demonstrates the potential of the methodology. In this
example complete enumeration is applied to find optimal day schedules. Our future
research will be aimed at incorporating heuristics to quickly find (close to) optimal day
schedules, so that larger problem sizes can be tackled. Finding an optimal day schedule
is not straightforward and a field of research on its own [40, 85].

In many service facilities customers are requested to make an appointment. There is a
substantial body of literature focusing on the design of appointment systems. Health-
care is the most prevalent application area and hence also most considered in the liter-
ature (see the surveys [40] and [85]). Appointment systems can be regarded as a com-
bination of two distinct queuing systems. The first queuing system concerns customers
making an appointment and waiting until the day the appointment takes place. The sec-
ond queuing system concerns the process of a service session during a particular day.
We denote these two queuing processes as the ‘access process” and the ‘day process’.
The remainder of this section provides an overview of the literature relevant for the
present work and is structured as follows: (1) appointment scheduling, (2) access time
models, and (3) integrating the access process and the day process.
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4.1.1 Appointment Scheduling

Appointment scheduling concerns designing blueprints for day-appointment schedules
with typical objectives as minimizing customer waiting time, and maximizing resource
utilization or minimizing resource idle time. A large part of the literature focuses on
scheduling a given number of appointments on a particular day [23, 103, 126, 130]. The
extent to which various aspects that impact the performance of an appointment sched-
ule are incorporated varies, such as customer punctuality [124], customers not showing
up (‘no-shows’) [93, 103], lateness of the server at the start of a service session [130],
service interruptions [124] and the variance of service duration [93].

Research techniques employed in appointment scheduling can be divided in analytical
and simulation-based approaches, of which the latter is most widely applied [40]. In
the day process we aim for an analytical approach, namely finite time Markov chain
analysis. Related examples with healthcare applications are [23, 103, 126, 153] and [91],
although these references do not consider unscheduled customers. Often, a homoge-
neous customer population is assumed [52]. Some studies however, focus on service
systems with various customer types. Differentiation between customer types is identi-
tied as a consequence of distinct service requirements [23, 22, 42, 107, 196]. Also, distinct
priority levels may be a reason for patient type differentiation. An example can be found
in [151], where service slots are pre-marked for various scheduled customer classes. In
this chapter, customer type differentiation arises from distinct arrival processes.

The effect of mixed arrival processes is studied in [81, 113] and [174]. Here, sched-
uled outpatients, unscheduled inpatients and emergency patients are taken into ac-
count. Patients without an appointment are either emergency patients who require non-
preemptive priority or inpatients available for ‘call-in” at any time during the day. These
unscheduled patients are assumed to arrive according to an equal arrival rate through-
out the day. In our case, we consider walk-in patients without priority who cannot
be called in during the day. Moreover, we consider non-stationary arrivals to incorpo-
rate the expected peak behavior of walk-in demand. Studies that do incorporate non-
priority unscheduled arrivals similar to the unscheduled arrivals in this chapter are
[10, 41, 42,117, 163, 177, 179]; however, in all cases a simulation approach is employed.
Also, these studies do not incorporate balking behavior of unscheduled customers.

4.1.2 Access Time Models

As our approach consists of a decomposition, isolated access time models are also of
interest. The access process we consider is discrete-time and cyclical in both the arrival
and service processes. Various access time models based on continuous-time queuing
models are available. Examples are the M (¢) /M /s(t) queue [82] and the adapted M /M /s
queue that models time-dependent demand [79]. The latter method is also applied to
a healthcare problem in [83]. To preserve the discrete-time nature we take as starting
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point the generating function approach for slotted queuing models in discrete time [32].
A survey on discrete-time queuing systems is presented in [30]. Models to evaluate
the length of hospital waiting lists are introduced in [204], and further studied in for
example [76]. In these models homogeneous appointment request arrivals are assumed.
In polling models, multiple queues are served by one server in cyclic order (see [181]
for an overview). However, cyclic arrival rates and cyclic service capacity have not yet
been incorporated in polling models.

4.1.3 Linking the Access and Day Process

Only a few examples jointly consider the access and day process. In [22] and [108],
appointment schedules ranging over a horizon of several days are evaluated. The aim
is to minimize the patient’s waiting and the doctor’s idle time, but the patient’s access
time is not studied in detail. In [162] the authors propose a two time scale model for the
ED — Ward patient flow. The fast time scale of the ED is modeled by a continuous time
Markov chain, while the slower time scale of the wards is modeled by a discrete time
Markov chain. The advanced (or open) access methodology [140] also considers two
time scales. With advanced access, a clinic leaves a fraction of appointment slots vacant
for patients that request an appointment on the same day or within a couple of days. As
many patients as possible are scheduled on the day they make an appointment request.
One should determine the optimal ratio between the reserved capacity for long-term
and same-day appointments [60]. This principle is slightly adapted in [131], where the
demand for short term appointments is distributed over several days, to smooth the
daily load of the system. The aim of the advanced access methodology is to minimize
access time (“do today’s work today”). Note that in an advanced access clinic patients
do announce themselves in advance and make a (same-day) appointment, contrary to
the type of unscheduled patients we consider, who just show up. Models that study the
advanced access methodology usually focus on capacity distribution [60, 160, 161].

Formulating a model to design an appointment schedule considering two time scales
is usually done using simulation techniques (e.g., [115]). An analytic approach is pre-
sented in [152], where the effect of capacity allocation among competing patient classes
on access time targets is studied using techniques from Markov decision modeling and
mathematical programming. An approach related to ours, although without the pres-
ence of walk-in patients, is given in [53]. The authors consider a service facility, and
tirst develop a vacation queuing system to determine the access time. Subsequently an
appointment system is developed that calculates the waiting time at the facility.

This chapter is organized as follows. In Section 4.2, we give an introduction to the
methodology and provide a formal problem description. Sections 4.3-4.5 present the
access and day process evaluation models and the algorithm. Section 4.6 describes the
numerical example, followed by the discussion in Section 4.7.
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4.2 Formal Problem Description

This section defines all modeling assumptions, defines the CAS, formally states the re-
search goal and gives an overview of the proposed approach. Since our approach is
generically applicable, we also present the methodology in the generic terms: a facility
that serves scheduled and unscheduled patients.

4.2.1 Assumptions

A facility consisting of R resources is operational during 7" time slots of length h, dur-
ing each day in a cycle of D days. Two types of patients have to be served: scheduled
and unscheduled patients. Service takes one time slot. Scheduled patients are given
a specific date and time immediately when an appointment is requested. In addition,
when the facility is temporarily congested, unscheduled patients are also offered an
appointment: if the service of an unscheduled patient cannot start within g time slots
after arrival, the patient will leave the facility and an appointment will be planned for
another day. We will refer to such patients as deferred unscheduled patients, or just de-
ferred patients. The first available appointment slot for scheduled and deferred patients
is always the next day at the earliest. All appointments, both scheduled patients and
deferred unscheduled patients, are scheduled according to a First Come First Served
(FCFS) principle.

We assume a non-stationary Poisson process for the arrivals of appointment requests,
with A, ..., AP the arrival rates for different days in the cycle. Next, during each day
in the cycle, we assume a non-stationary Poisson arrival process for unscheduled pa-
tient arrivals, with slot-dependent arrival rates: x¢ for day d = 1,..., D and time slot
t=1,...,T. Table 4.1 summarizes the notation introduced in this section.

4.2.2 Cyclic Appointment Schedule

To balance the non-stationarity at both the daily and cyclic (i.e. weekly, biweekly or
monthly) level, we aim to design an appointment schedule that is cyclic. We introduce
the CAS, C = (C*,...,CP), with C4 = (cf,...,c%), where ¢! specifies the maximum
number of patients that may be scheduled in slot ¢ on day d. To find an adequate ap-
pointment schedule, we propose a decomposition. First, we introduce the concept of a
capacity cycle, K = (k',..., k), where k“ prescribes the maximum number of patients
to schedule for day d in the cycle. Second, given the capacity cycle K, the day plan is
specified. In order to match the capacity cycle K, the day plan C%should be such that

T
k= > i1 Cgl-
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4.2.3 Goal

An effective strategy balances (1) the opportunities for unscheduled patients to be served
on the same day without long waiting time and (2) for scheduled patients to be served
within an acceptable access time. To this end, we define the best policy as the cyclic
appointment schedule in which the mean fraction of unscheduled patients served on
the day of arrival, F), is maximized, while for scheduled patients the access time ser-
vice level, S(y), defined as the percentage of patients that is served within y days, is
above a pre-specified norm S""(y). The value of the vector (y, 5™ (y)) is chosen by
the facility.

Table 4.1: Notation introduced in Section 4.2

Symbol Description
R Number of resources
T Number of time slots during a day
t Time slotindex, t =1,...,T
h Length of a time slot
D Cycle length in days
d Dayindex,d=1,...,D
g Patience of an unscheduled patient,
given in the number of slots a patient is willing to wait

A4 Initial appointment request arrival rate on day d
x¢ Unscheduled patient arrival rate on day d during time interval (¢ — 1,
cd Maximum number of appointments to schedule in slot ¢ on day d
c? Appointment schedule on day d, C?¢ = (c{,...,c%)

Cyclic appointment schedule, C = (CY,...,CP)
k4 Maximum number of appointments to schedule on day d
K Capacity cycle, K = (k!,... kP)
F E [Fraction of unscheduled patients to serve at day

of arrival during one cycle]

S(y) Access time service level: fraction of patients with
access time not greater than y

(y,S™"™(y)) Access time service level requirement: fraction of patients with
access time not greater than y is at least S(y)

¢? Distribution of the number of deferred patients on day d

ve Total appointment request arrival distribution on day d

e Expected number of deferred patients on day d
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424 Approach

The best CAS is determined by employing an iterative algorithm that effectively utilizes
our decomposition of the CAS in the capacity cycle and the day plan. In each iteration,
tirst, capacity cycles are generated with at most R-T" appointments per day, for which the
access time service level norm will be satisfied. All patients requesting an appointment
are taken into account —thus both scheduled patients and deferred unscheduled pa-
tients. We derive the distribution of the number of deferred unscheduled patients %, s0
that the distribution of the total number of appointment requests on day d is the sum of
a Poisson distribution with parameter \” and the distribution ¢?. To assess whether spe-
cific capacity cycles with arrival distribution ¢ satisfy the access time norm, S (y),
a cyclic slotted queuing model is proposed (Model I, presented in Section 4.3). Next,
for each capacity cycle generated in the first step, the best day schedule is determined.
Given the queue length probabilities resulting from Model I and the unscheduled pa-
tient arrival rates, x¢, for each day the k? appointments are distributed over the T time
slots, such that the number of deferred unscheduled patients is minimized. To achieve
this, a Markov reward model is presented (Model II, Section 4.4), which is used to cal-
culate the performance of a specific day schedule. Then, the capacity cycle that achieves
the lowest mean number of deferred unscheduled patients over the entire cycle is cho-
sen as the best cycle. If the mean numbers of deferred unscheduled patients ¢, did not
change significantly since the last iteration, the algorithm stops. If not, the entire process
is repeated. A detailed description of the algorithm is given in Section 4.5.

4.3 Model I: Access Time Evaluation

In this section, a cyclic slotted queuing model is presented that allows for an evaluation
of the access time for scheduled patients, given an arbitrary capacity cycle. To this pur-
pose, we focus on the backlog, B?, at the start of each day d. We define the backlog as
the number of patients for which a request for an appointment has already been made,
while the appointment itself has not yet taken place. We formulate a Lindley type equa-
tion to characterize the backlog, and use a probability-generating function approach to
derive expressions for the distribution of the backlog at the start of each day in the cycle.
From the backlog distribution, we will derive the access time distribution. A summary
of the notation used in this section is given in Table 4.2.

4.3.1 Lindley Type Equation

Consider day d. During the day, a maximum number of patients, k%, is served, and a
number of new patients arrives, A?. At the start of day d, there is a backlog, B?. Since
it is not possible to make an appointment on the day of arrival itself, the backlog at the
start of the next day equals the backlog on day d minus the number of patients served



66 CHAPTER 4. DESIGNING CYCLIC APPOINTMENT SCHEDULES

Table 4.2: Notation introduced in Section 4.3

Symbol Description

BY Backlog at start of day d

Pgpa(z)  Generating function of B¢

Al Number of appointment requests arriving at day d

af Appointment request arrival probabilities, P (A? = j)

P4i(z)  Generating function of A%

4 Stationary backlog probabilities, P (B? = j)

k Total number of available appointment slots in a capacity cycle, k = ", k¢
E[W9  E[Access time for an appointment request arriving at day d]

E[W] E[Access time for an arbitrary appointment request]

on day d plus the number of patients that arrived on day d. This can be formalized in
the following Lindley type equation:

Bd+1 — (Bd—k‘d)++Ad, (41)

where ()" = z if z > 0, and 0 otherwise.

4.3.2 Generating-Function Approach

Using an approach based on generating functions [32], we derive expressions for the
distribution of the backlog at the start of each day in the cycle. The transition probabili-
ties for going from state B = i to state B*™ = ¢ are given by:

P(A? =) if i—k4<0

d+1 __ |\ pd __ ;\ __
]P’(B =1i'|B —Z)—{P(Ad:y_wrkd) if i—k%>0.

(4.2)

Let 7{ denote the stationary probability that at the start of day d, the backlog equals j pa-
tients. Furthermore, let af denote the probability that A = j. Note that the underlying
probability distribution does not necessarily has to be Poisson. The stationary probabil-
ities can be computed recursively, under the condition that the capacity for scheduled
patients is larger than the average demand, i.e. Y ,E[49] < > k%, since otherwise we
would be dealing with an unstable system. Ford = 1,..., D, j > 0 we obtain:

k-1 J

d+1 _ d d d _d

L = aj E T+ A5 yq - (4.3)
=0 0

q=

We multiply both sides of (4.3) with z7, where |z| < 1, and 2’ denotes z raised to the

power j, as opposed to index d in 79, af and k. The summation of both sides of the
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resulting equation over j yields the probability-generating function for 74+

00 kd—1

Zﬂgﬂzj - Z j Z T Z a;j— qﬁkd+q : (44)
=0

J=0

From this we obtain:

PBd+1 de+lzj PAd ()% _deBd( +PAd(Z Z ( ) . (45)

=0

Rearranging terms and changing the order of summation leads to the probability gen-
erating function of B¢, Pga(2):

D kD -1 o [d+D—i-1 i1
Zl Zo (2" — zq)ﬂfl”D*Z { 1 2* Ho PAd+D—r—1(Z):|
1= = s=d r=

PBd (Z) = i D D s

[1 2% =11 Par(2)
g=1 h=1
where, since we consider days in a repeating cycle, we define:
(4.6)

d— D, dmod D =0
| dmod D, otherwise.

The generating functions uniquely determine the stationary probabilities 7{,j = 0, ...,
k% — 1. To calculate these probabilities, we build upon the approach given in [2]. Define
k as the total number of available appointment slots in a capacity cycle, i.e. k = 3.7, k%.
Then, the denominator of Pga(z) has k—1 zeros inside the unit disk; this can be shown by
using Rouché’s theorem [110]. All generating functions, including Pga(z), are bounded
for |z| < 1, and therefore the zeros of the denominator are also zeros of the numerator
[32]. Thus we obtain k£ — 1 equations, and use Ppa(1) = 1 to secure the last equation. The
k — 1 zeros of the denominator of Pga(z) can be found by solving:

H HPAh = 0. (4.7)

g=1

The solutions of (4.7) also represent zeros of the numerator. Together with the normal-
izing equation Pgi(1) = 1, Ppa(z) is completely defined for d = 1,..., D. Note that now
only the backlog probabilities for j = 0,..., k% — 1, have been derived. The remaining
backlog probabilities are calculated directly using (4.3).
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4.3.3 Performance Measures

The access time distribution can be directly derived from the backlog probabilities, since
appointment requests are served according to the FCFS principle. The FCEFS service or-
der and the impossibility of making an appointment request for the day of arrival results
in an access time of at least one day. Several performance measures can be derived. Of
particular interest are the probability distribution of the access time, the mean access
time and the access time service level.

The Probability Distribution of the Access Time

First we derive the conditional access time probability that the access time for a client
arriving at day d exceeds y days, given that the backlog at the start of day d equals b
clients. As argued, for y = 0, we have that

PWe>y|B*=b =1 Vb. (4.8)

For y > 0, we have that

Y .
1 if o> kit

PW? > y|B* = b| = - =0 4.9
| v | 3 (=s)PlAY=j] (9)

Izt ETAT] otherwise,

where s represents the number of patients arrived on day d that will be served within y
days:

Yy Yy
s = min {Z EY TR b} . (4.10)

i=1 1=0

We can explain formula (4.9) as follows. First, when the backlog b outnumbers the avail-
able capacity in y days, the conditional probability that the access time exceeds y days
equals 1. Otherwise, all arrivals beyond the number s will wait for more than y days.
There are j — s such arrivals. Then, the probability that the access time for a client arriv-
ing at day d exceeds y days, equals

PWe > 4] = ip[wd > y|B% =] - P[B* = b]. (4.11)
b=0
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The Expected Access Time

Analogously, the mean access time for an appointment request that arrives on day d is
computed with:

EWYBY=1b] = ip[wd > y|BY = b] (4.12)
y=0
and thus
E[WY = iE[Wd\Bd = b] - P[B? = ] (4.13)
b=0
and
E[W] = ED: E[W1] DE[Ad] (4.14)
d=1 q; E[A]

The Access Time Service Level

Using the access time probability distribution, we determine the fraction of scheduled
patients for which the access time does not exceed y. We define this as follows:

Sy)=>_ (1-PW*>y) ;Eﬂ (4.15)
d=1 ;E[Aq]

4.4 Model II: Day Process Evaluation

In this section, we present a model to evaluate the performance of a single day in
the CAS. Recall that the CAS consists of a capacity cycle , K = (k',..., k"), that pre-
scribes the maximum number of patients that can be scheduled for day d. Using model
I, we were able to evaluate the access time performance of a given capacity cycle. Be-
low, we evaluate the day process of a given appointment schedule, by formulating a
Markov reward process. Note that although the day appointment schedule, C?, is open
for scheduling appointments, there may be less backlog than the k% = ", ¢/ available
appointment slots. Therefore, we introduce the notation C to represent the realized day
planning, which is the schedule we evaluate. Now, C? = (&, ... &) expresses the ac-
tually utilized appointment slots. Since appointments are planned on a FCFS basis, the
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realized appointment day schedule C will always be a truncated version of day sched-
ule C. Of course, unoccupied appointment slots can be used for unscheduled patients.
Since we will consider the day performance on a day-by-day basis, in the remainder of
this section we drop the superscript d for notational convenience. Table 4.3 provides a
summary of the notation introduced in this section.

Table 4.3: Notation introduced in Section 4.4

Symbol Description
C Realized schedule under CASC, C = (C',...,CP),C% = (¢4,...,¢ch)
q P(No-show of a scheduled patient)
et Number of slots available for unscheduled patients in the next
g intervals after time ¢
pi(s) P(Number of scheduled patients arriving at the start of slot ¢ = s)
i (u) P (Number of unscheduled patients arriving

during interval (t — 1,t] =u )
P[(s,u)ts1 | (k,1)¢] Transition probability from state (¢, k,[) to state (¢ + 1, s, u)

Q+(s,u) P (Number of scheduled, unscheduled patients waiting
at start of slot t = s, u )
z/t E[Number of deferred patients in time interval (0, ¢]]
v E[Total number of deferred patients]
N Distribution of the number of deferred patients
in time interval (¢t — 1, ¢
® Distribution of the total number of deferred patients

44.1 Assumptions

For clarity of presentation, some of the assumptions introduced in Section 4.2 are re-
peated. During one day the facility of R resources is operational during 7" intervals of
length h. Two types of patients have to be served: scheduled and unscheduled patients.
Service always takes one time slot of length h. At the beginning of each time slot, a ser-
vice can start. If there are both scheduled and unscheduled patients, scheduled patients
are given priority. Overtime is not allowed. Scheduled patients arrive on time, accord-
ing to the schedule C. In addition, we allow for no-shows, that is, the probability that
a scheduled patient actually arrives at the facility equals 1 — ¢, so that ¢ represents the
probability that a patient does not show up.

Unscheduled patients arrive at the facility according to an inhomogeneous Poisson pro-
cess with slot-dependent arrival rate y;. If the service of an unscheduled patient cannot
start within g time slots after arriving, the patient will leave the facility and an appoint-
ment will be planned for another day. We assume that the facility has no pre-knowledge
about potential no-shows. Therefore, an unscheduled patient arriving during interval
(t — 1,t] will stay if and only if the number of unscheduled patients already waiting is
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strictly smaller than the minimum number of service slots during the upcoming g inter-
vals that are not utilized by scheduled patients. The number of time slots anticipated to
be available for unscheduled patients during the upcoming g intervals is denoted by e;:

min{t+g—1,T}

e= Y.  (R-¢) (4.16)

J=t

4.4.2 States and Transition Probabilities

The state of the system is denoted by the tuple (¢, s, u), which specifies that at the begin-
ning of time slot ¢, s scheduled and « unscheduled patients are present. Let p;(s) denote
the probability that s scheduled patients arrive at the beginning of time slot ¢. Since
each no-show is assumed to occur independently, these probabilities are calculated as
follows:

Pi(s) = { (()f;)(l —a)' (@), Sfég & 17)

Let p}'(u) denote the probability that © unscheduled patients arrive during time interval
(t — 1,t]. As specified, p}(u) is Poisson distributed with slot dependent parameter y;.
Note that x; represents the arrival rate of unscheduled patients that arrive before the
opening time of the facility. Furthermore, note that any distribution function p} can be
used in the day process evaluation model. Therefore, for model I the assumption of a
Poisson arrival process is not strictly required.

Let P[(s,u)i11 | (v,w):] denote the transition probability of jumping from state (¢, v, w)
to (t + 1, s,u). Below we specify these transition probabilities for all possible events. In
Figure 4.1, the state space for an arbitrary time slot ¢ is displayed in which the seven dif-
ferent possible events (a)-(g) are indicated. The events can be separated in three groups:
tirst, cases (a)-(c) in which no scheduled patient is served (v = 0), second, cases (d) and
(e) in which both scheduled and unscheduled patients are served (v < R), and third,
cases (f) and (g) in which only scheduled patients are served (v > R). In the expressions
below, 1,4 represents the indicator function; 1, = 1 if condition A is satisfied, and 0
otherwise.

Case (a). v = w = 0; no patient served:
P(s,u)it1 | (v,w)e] = Pf+1(5)pqit+1(u)-
Case (b). v =0,0 < w < e;; unscheduled patient(s) served:

P [(87 U)H-l ’ (Uv w)t] = prrl (3)p?+1(u —w+ min{R, w})]l(uzwfmin{R,w})’
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Figure 4.1: Day process state space and events

(© () (8)

(b) (d) ()

(a)

Case (c). v =0,w > e; unscheduled patient(s) served, unscheduled patient(s) deferred:
Pl(s,w)er1 | (v,w)e] = piyi(s)pia(u— et + R)L(y>e,—R)-

Case (d). v < R, w < e; scheduled and unscheduled patient(s):
P[(s,u)e1 | (v,w)e] = pia(s)piys (uw — w + min{(R — v), w}) 1 (y>w—min{(R—v),w})-

Case (e). v < R,w > e; scheduled and unscheduled patient(s) served, unscheduled patient(s)
deferred:

Pl(s,u)es1 | (v,w)e] = pipg(s)piys (v — et + R — )L (y>e,— Rio)-
Case (f). v > R, w < ¢;; scheduled patient(s) served:
P[(s,u)eq1 | (v, w)e] = piyi(s —v+ R)pfyi (v — w)L(s>0-r) L usw)-
Case (g). v > R, w > e;; scheduled patient(s) served, unscheduled patient(s) deferred:

P [(87 u)t-i—l ’ (Uv w)t] = prrl (3 —v+ R)p}tﬁrl (u - et)]l(szva)]l(uz et)
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4.4.3 Performance Measures

Let Q:(s, u) denote the probability that at the start of slot ¢ there are s scheduled and u
unscheduled patients present. );(s, u) can be calculated as follows:

Q1(s,u) = pi(s) - pY(u). (4.18)
Fort=2, .. 1T
Qua(s,0) = 33 Qulv,w)P (s, u)ras | (v, )] (4.19)

The mean number of deferred patients, v = vy, is calculated accordingly:

= Z Z (u—-e1)-Q1(s,u). (4.20)
s=0 u=e1+1
Fort=2,..,T:
Vi =V 1+ Z Z (u—er) - Quls,u). (4.21)
s=0 u=et+1

The distribution of the number of deferred patients, ¢, can be calculated as follows.
Fort=1,...,T:

[e o]

ZZQt(S>u)7 ]: 0

di(j) = = (4.22)
> Qilse+4), j>0,
s=0

and

¢:¢1*...*¢T, (423)

where * denotes the discrete convolution function.
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4.5 Algorithm: Finding a Balance

The algorithm presented in this section links the access and the day process. Models I
and II are used iteratively to maximize the number of unscheduled patients served dur-
ing the day of arrival, given the pre-specified access time service level norm. As men-
tioned before, unscheduled patients that cannot be served within g time slots receive
an appointment. The algorithm determines the optimal size of this group of deferred
patients by gradually increasing its size during each iteration. Table 4.4 summarizes the
notation presented in this section.

In the first iteration, the mean number of deferred patients is set to zero. Then, the
best scheduling cycle (using Model I) with accompanying appointment schedule (using
Model 1) is determined, given the appointment request arrival processes with rate \?
and that of unscheduled patient arrivals with rate x¢. The distribution of the number
of deferred patients on day d in iteration n is denoted by ¢?(n), and the mean by v%(n).
To account for the patients that were deferred, the distribution of appointment request
arrivals, v%(n), is in the next iteration set to

v (n) = P(A?) « ¢%(n — 1), (4.24)

where P(\?) denotes the Poisson distribution with parameter \?. As such, the appoint-
ment requests generated by deferred patients are taken into account on the day of occur-
rence in the previous iteration. Then, a new best policy is calculated. As more appoint-
ment slots are reserved, this may result in more deferred patients than in the previous
iteration. This iterative procedure is repeated until on each day in the cycle, a balance is
found between the anticipated extra demand for appointments from deferred unsched-

Table 4.4: Notation introduced in section 4.5

Symbol  Description

n Iteration counter

¢%(n) Distribution of the number of deferred patients on day d in iteration n
vi(n) Expected number of deferred patients on day d in iteration n

74(n) Total appointment request arrival distribution on day d in iteration n

€ Precision of the algorithm’s stop criterion

K(ny) Capacity cycle option f consisting of (k!(ny),..., k" (ny)) in iteration n
C(ny) The best CAS given capacity cycle K(ny)

ﬁ?(n ) The probability that in iteration n under capacity cycle K (ny)

J appointment reservations are utilized by appointments on day d
v&(ny) E[Total number of deferred patients in iteration n under
capacity cycle K (ny) and CAS C]
nglj (nf) E[Number of deferred patients on day d in iteration n under capacity cycle

K(ny) and CAS C when j appointment slots are utilized |




4.5. ALGORITHM: FINDING A BALANCE 75

uled patients (which was v%(n — 1)) and the realized deferred unscheduled patients
(which is v%(n)); expressed formally, the algorithm terminates if, for some small ¢,

vi(n) —vin —1)| <e. (4.25)

It is important to note that we aim for balance on a day-by-day basis. Balance just on
a cycle basis (| Y-, v%(n) — v¥(n — 1)|] < ) is not sufficient, since only in the case that
[vi(n) —vi(n—1)| < ¢ d =1,...,D, it is guaranteed that the appointment requests
of deferred patients are as anticipated. Only then we can assure that in the access time
calculations, we account for the deferred patients on the day they occur, since the access
time calculations that use ¢?(n — 1), based upon which the capacity cycle is designed,
are still valid for ¢¢(n) in this case.

We now specify the procedure used to find an optimal policy within each iteration.
First, by applying Model I, all capacity cycles fulfilling the specified access time service
level norm are generated. So, given v%(n), all capacity cycles K = (k',..., k") satisfy-
ing S""™(y) are generated. Suppose that m different capacity cycles satisfy the norm,
then denote these options for iteration n by K(n;) = (k'(ny),..., kP (ns)), f =1,...,m.
From these options, the best capacity cycle is selected, which is the capacity cycle that
minimizes the mean number of deferred patients. To do this, for each scheduling cy-
cle option K (ny), the best CAS C(ny) is determined. The best CAS’s are determined by
applying Model II as follows.

First, observe that although in a capacity cycle K (n;) there are k%(n;) appointment slots
reserved on day d, not all of these reserved slots are necessarily utilized by scheduled
patients. Since appointments are planned according to the FCFS principle, we know
from Model I the queue length probability vectors, 7(n ), which also give the probabil-
ities of utilizing the first j out of the k%(n) reservations under capacity cycle K (n;). Let
us denote these probabilities by 7/ (n):

7 (ny), i =0,...,k%ns) —1
7 (ny) = i) ) T (ne) =1 (4.26)
Zq:kd(nf) 7T-q(nf)a J=k (nf)

By evaluating each day appointment schedule for d = 1,...,D, f = 1,...,m and
Jj=0,...,k%n;), the best CAS is determined for each capacity cycle K(n;), so by com-
plete enumeration. Denote the mean total number of deferred patients in cycle K (ny)
under appointment schedule C' by v¢(ny). With v*(ns) defined as the mean total num-
ber of deferred patients in cycle K (ny), under the best CAS the best cyclic appointment
schedules are those that minimize:

D k(ny)

v (ng) = ményo ny) mmz Z “(ny) Vcd‘] (ng), (4.27)

d=1 j=0
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where ngu(n ) denotes the mean number of deferred patients on day d under capacity

cycle K(ns) and cyclic appointment schedule C, if j appointment slots are utilized by
scheduled patients. Note that C?|j is a truncated version of C, in exactly the same way

that C was defined in Section 4.4. Now, the final step is to select the capacity cycle,
K(ny), and accompanying CAS, which is the CAS with the lowest mean number of
deferred patients, namely:

vi(n) = mfin vi(ng), f*(n)=uarg mfin v*(ng), C*(n)=arg mcin vo(ng).  (4.28)

Figure 4.2 displays the complete algorithm in pseudo code.

Figure 4.2: The algorithm

Step 1: Specify: R,T, D, g,q,5™""(y), €

specify input Vd : A vd,t oz xd.

Step 2: n = 1;Vd: v4(1) := 0,74(1) := P(\9).
initialize algorithm

Step 3: Given v%(n), determine all K(ng), f=1,...,m,
determine feasible cycles  such that S(y) > S™™™(y). Vf,d : store 7(ny).
Step 4: Determine v*(n), f*(n) and C*.

choose best cycle

Step 5: IfVd : |v%(n) — vi(n — 1)| < e, then stop,
assess current solution  else proceed to step 6.

Step 6: Vd : v (n + 1) := vi(n), ¢%(n + 1) := ¢%(n),
adjust deferrals Y4+ 1) := P(AY) + ¢%(n + 1);

n :=n + 1 and return to step 3.

Convergence

For the system to be stable we require that >, A + >, 3" x¢ < R - T, so that total
demand does not exceed capacity. In addition, we would like to determine the condi-
tions under which the algorithm will converge. Therefore, first observe that since the
unscheduled patient arrival rate \¢ is fixed and the first iteration starts with no deferred
patients, i.e. #%(0) = 0, in each iteration it is not possible to choose the CAS such that
S vin) < 3, v4n — 1). The total mean number of deferred patients Y, v%(n) is thus
monotonically non-decreasing. Also, if the access time norm 5" (y) is set such that it
can be satisfied if all patients are planned, we ensure that in each iteration it is possible
to find feasible capacity cycles, i.e. capacity cycles for which S(y) > S""™(y). However,
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convergence of the algorithm is not assured. Although not likely for practical instances,
it cannot be guaranteed that the algorithm does not run into the situation that it keeps
jumping between points for which the total mean number of deferred patients does
not change, but without day-by-day balance, i.e. |>,v%(n) — v*(n — 1)| < ¢ and not
lvi(n) — v¥(n — 1)| < ¢, for all d. If such a case occurs, an additional rule to act as a tie-
breaker is required. We extensively tested the algorithm by evaluating fifteen different
instances (see Section 4.6).

4.6 Numerical Experiments

We tested the algorithm on fifteen scenarios, each with different characteristics. To il-
lustrate the methodology, we present in this section the results of one of the numerical
experiments.

4.6.1 Input Parameters

We consider a facility with one resource, and a cycle length of D = 5 days, where each
day consists of 7' = 8 slots. The initial demand per day for appointment requests is
given by (A\!,...,\%) = (5,0,2,0,7). The arrival rates of unscheduled patients y¢ are
given in Table 4.5. These arrival rates are chosen such that different days in the cycle
represent different unscheduled arrival patterns, as also illustrated by Figure 4.3.

Figure 4.3: Graphical representation of the appointment request arrival rates per slot per day
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The access time service level norm is set such that 95% of the patients that are eventually
scheduled are served within two cycles or less, (y, S™"™(y)) = (10, 0.95). Furthermore,
we assume that unscheduled patients are willing to wait for a maximum of two time
slots, i.e. ¢ = 2, and for computational convenience we assume that the number of
deferred patients on day d, ¢, is Poisson distributed. For simplicity, we also assume that
all scheduled patients show up, i.e. ¢ = 0. The stop criterion of the algorithm applies
the threshold ¢ = 0.0001. Table 4.6 provides an overview of the input parameters. Note
that the total mean demand for scheduled patients per cycle is 14, and the total mean
demand for unscheduled patients per cycle is 22. Since there are D - T" = 40 time slots
available within a cycle, the utilization of the system is 90%.

Table 4.5: Unscheduled patient arrival rates per slot per day

t

1 2 3 4 5 6 7 8 | Total
030 060 1.00 1.40 140 1.00 055 0.25]| 6.50
1.10 1.00 090 080 0.70 0.60 0.50 0.40 | 6.00
015 030 045 0.60 0.60 045 030 0.15]| 3.00
0.10 0.10 0.10 0.10 0.0 0.10 0.10 0.10 | 0.80
030 090 150 1.00 030 075 0.65 030 | 570

SIS SR R I

Table 4.6: Overview of the input parameters

Parameter Description Value

D Cycle length 5

T Number of time slots 8

AL N Appointment request arrival rates 5,0,2,0,7
(y, S™"(y)) Service level norm (10,0.95)
g Patience of unscheduled patients 2

q No-show probability 0

€ Algorithm precision 0.0001

4.6.2 Execution of the Algorithm

The algorithm was executed and the results obtained after each iteration are displayed
in Table 4.7. In the first iteration the number of deferred unscheduled patients is positive
on each day of the cycle, v%(1) > 0. The total number of deferred patients is }_,v%(1) =
4.055. Therefore, the deferred patients are added to the scheduled arrival stream and
a new iteration is started. This procedure is repeated until after iteration 14, balance is
obtained for each day, i.e. [v4(n) — v%(n — 1)| < e. In Figure 4.4 and 4.5 we see that the
total number of deferred patients is monotonically non-decreasing, while deferrals on
the day level are both increasing and decreasing. The fluctuations are substantial in the
tirst iterations and the system stabilizes already after six iterations.
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This behavior is also reflected by the dynamics of the capacity cycles. The total number
of reserved slots for appointment slots develops as follows: (16, 19, 21,21, 21,22, ...,22).
Again, although the total number of reserved slots 3, k¢ is monotonically non-decreasing,
for a specific day k? may also decrease. For example, the capacity cycles of iterations 3—

5 all have a total capacity of 21, but the capacity cycle obtained in the third iteration
is changed in iteration 4 so that one appointment is shifted from day 5 to day 3. This
change is reversed in iteration 5. The final capacity cycle is already obtained in iteration
6. The only purpose of iteration 7-14 is to obtain the desired balance in the daily defer-
rals. Note that this is a direct result of the magnitude of e. If € had been set larger, the
algorithm would have stopped earlier.

Table 4.7: Results per iteration step of the algorithm

Iteration Day Tot. app. req. rate Deferral rate Difference Capacity cycle CAS

n d ~@ vin—1) vin) |pin—1)—vi(n—1)| ke c

1 1 5 0 1.133 1.133 1 (1,0,0,0,0,0,0,0)
2 0 0 0.865 0.865 1 (1,0,0,0,0,0,0,0)
3 2 0 0.547 0.547 4 (1,1,0,1,0,0,1,0)
4 0 0 0.637 0.637 8 (1,1,1,1,1,1,1,1)
5 7 0 0.873 0.873 2 (1,1,0,0,0,0,0,0)

2 1 6.133 1.133 1.456 0.323 2 (1,1,0,0,0,0,0,0)
2 0.865 0.865 1.296 0.431 2 (1,0,0,0,0,0,1,0)
3 2.547 0.547 0.549 0.002 4 (1,1,0,1,0,0,1,0)
4 0.637 0.637 0.736 0.099 8 (1,1,1,1,1,1,1,1)
5 7.873 0.873 1.371 0.498 3 (1,1,0,0,0,0,1,0)

3 1 6.456 1.456 1.456 0.000 2 (1,1,0,0,0,0,0,0)
2 1.296 1.296 1.296 0.000 2 (1,0,0,0,0,0,1,0)
3 2.549 0.549 0.952 0.403 5 (1,1,1,0,0,1,0,1)
4 0.736 0.736 0.715 0.021 8 (1,1,1,1,1,1,1,1)
5 8.371 1.371 1.752 0.381 4 (1,1,0,0,0,1,1,0)

4 1 6.456 1.456 1.456 0.000 2 (1,1,0,0,0,0,0,0)
2 1.296 1.296 1.296 0.000 2 (1,0,0,0,0,0,1,0)
3 2.952 0.952 1.498 0.546 6 (1,1,1,01,01,1)
4 0.715 0.715 0.742 0.027 8 (1,11,1,1,1,1,1)
5 8.752 1.752 1.402 0.350 3 (1,1,0,0,0,0,1,0)

5 1 6.456 1.456 1.456 0.000 2 (1,1,0,0,0,0,0,0)
2 1.296 1.296 1.296 0.000 2 (1,0,0,0,0,0,1,0)
3 3.498 1.498 0.954 0.544 5 (1,1,1,0,0,1,0,1)
4 0.742 0.742 0.771 0.029 8 1111,111,1)
5 8.402 1.402 2.049 0.647 4 (1,1,0,0,1,0,1,0)

6 1 6.456 1.456 1.456 0.000 2 (1,1,0,0,0,0,0,0)
2 1.296 1.296 1.296 0.000 2 (1,0,0,0,0,0,1,0)
3 2.954 0.954 1.495 0.541 6 (1,1,1,0,1,0,1,1)
4 0.771 0.771 0.721 0.050 8 (11,1,1,1,1,1,1)
5 9.049 2.049 1.794 0.255 4 (1,1,0,0,0,1,1,0)

14 1 6.456 1.456 1.456 0.000 2 (1,1,0,0,0,0,0,0)
2 1.296 1.296 1.296 0.000 2 (1,0,0,0,0,0,1,0)
3 3.497 1.497 1.497 0.000 6 (1,1,1,0,1,0,1,1)
4 0.743 0.743 0.743 0.000 8 (1,11,1,1,1,1,1)
5 8.897 1.897 1.897 0.000 4 (1,1,0,0,0,1,1,0)
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Figure 4.4: Graphical representation of the evolution of the deferral rates per day
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4.6.3 The Resulting CAS

Table 4.8 presents the final results for the numerical example. The percentage of un-
scheduled patients served on the day of arrival is 69%, so F' = 0.69. This fraction is
composed by fractions F*, ..., P that differ from day to day (¥ = (3, x¢—v%)/ >, x¥).
For example, since day 4 is a quiet day with respect to unscheduled patient arrivals, it is
completely filled with appointments. Only if no appointment request is made in one of
the reserved slots, an unscheduled patient can be served. Apparently, it pays off to serve
on average only 7% of the unscheduled patients directly on day 4 in the cycle. This is
a result of the fact that only 3.6% of the unscheduled patients arrive on day 4, and that
accordingly appointments are preferably planned on this day. The deferred unsched-
uled patients stream per day and the mean number of unscheduled patients served on
the day of arrival are displayed in Table 4.8, which also reflects that on day 4 a small
amount of unscheduled patients is directly served but also relatively few patients are
deferred. The realized service level S(10) = 0.962 is well above the defined service level
norm of 0.95.

The resulting capacity cycle is K = (2,2,6,8,4), with corresponding day schedules
which we discuss one-by-one below. Note that to achieve the service level norm it is
required to reserve a buffer capacity of 1.11 to account for variability in appointment
request arrivals, since 22 appointment slots are reserved while the average total num-
ber of patients to schedule within a cycle is > ,(A + v%) = 14 + 6.89 = 20.89. Appar-
ently, the service level norm is achieved with only 5% buffer capacity, thus reserved
capacity for appointments can be used efficiently. The realized mean load per day, de-
noted by L', ..., L, is a result of the capacity cycle, the probabilities that the reserved
appointment slots are utilized by appointment requests and the mean number of un-
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Figure 4.5: Graphical representation of the evolution of the total deferral rate

8,

~
I

Deferred unscheduled patients v
EN

0 T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration n

scheduled patients served on day of arrival >, x¢ — v It turns out that the load is
balanced throughout the cycle where each day has a realized load between 6.7 and 7.7.
Finally, we discuss the resulting day schedules, to explain the moments on which the
appointments are planned (see also Figure 4.6).

Day 1, C' = (1,1,0,0,0,0,0,0). Although the lowest unscheduled arrival rate occurs at end of
the day, the appointments are planned at the beginning of the day. Since unscheduled
patients are willing to wait 2 time slots, a peak in arrivals has an impact until two slots
afterwards. If appointments were planned at the end of the day, there is no possibility to
serve arriving unscheduled patients, while when planning appointments at slots at the
beginning of the day, early unscheduled arrivals can be served in the third time slot.

Day 2, C? = (1,0,0,0,0,0,1,0). Again, the tendency to plan appointments early shows up. But,
the drop in unscheduled arrivals is such that it is worthwhile to plan one appointment
at the end of the day. However, again although the lowest arrival rate occurs in the latest
time slot, the appointment is planned one slot before, to be able to serve an unscheduled
patient arriving during interval (7" — 3,7 — 1].

Day 3, C® = (1,1,1,0,1,0,1,1). The demand for unscheduled patients is relatively low. There-
fore, only two slots are left open in which no appointment is planned. These are planned
during the peak hours of unscheduled arrivals. However, the open slots are not planned
consecutively, so to spread the possibilities for unscheduled patient service.

Day 4, C* = (1,1,1,1,1,1,1,1). As described before, this is a quiet day for unscheduled pa-
tients. Therefore, all slots are reserved for scheduled patients. However, note that not al-
ways are all reserved slots used for appointments; in 88% of the cases all reserved slots on
day 4 are utilized for scheduled patients.
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Table 4.8: End results for the case study

Indicator Description Value

F Fraction unscheduled directly served 0.69

Ft ... F° Daily fraction unscheduled directly served  0.78,0.78,0.50, 0.07, 0.67
S(10) Service level scheduled patients 0.962

v, uP Deferral rate per day 1.46,1.30,1.50,0.74,1.90
Suxi —vh o>, xP —vP Unscheduled patient service rate per day ~ 5.04,4.70,1.50,0.06, 3.80
Lt,...,LP Realized utilization per day 7.04,6.70,7.48,7.71,7.06
K Capacity cycle (2,2,6,8,4)

ot CAS day 1 (1,1,0,0,0,0,0,0)

Cc? CAS day 2 (1,0,0,0,0,0,1,0)

c3 CAS day 3 (1,1,1,0,1,0,1,1)

ct CAS day 4 (1,1,1,1,1,1,1,1)

c? CAS day 5 (1,1,0,0,0,1,1,0)

Day 5, C* = (1,1,0,0,0,1,1,0). The appointments are planned around the unscheduled arrival
peaks. It is remarkable that the two later appointments do not occur exactly during the off-
peak hours but later, which can also be explained by the aforementioned delayed impact
of unscheduled arrival peaks.

Figure 4.6: The CAS versus the unscheduled patient arrival rates per slot
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The final conclusion is that the resulting CAS and its performance is the outcome of the
complex interaction between the scheduled patient arrival rates \¢, the unscheduled
patients arrival patterns x¢ and the service level requirement 5" (y). For example, if
Snorm(y) is set tighter, it is to be expected that the resulting capacity cycle more closely
resembles the total arrival rates for appointment requests v%,d = 1,..., D. Also, since
there would be less flexibility to spread the appointments, the fraction of unscheduled
patients served on the day of arrival, /', would decrease.

4.7 Discussion

In this chapter we have outlined a methodology to develop an appointment schedule for
facilities with scheduled and unscheduled arrival streams. The methodology consists
of two separate models, one to evaluate the access and the other to evaluate the day
process. The two models are linked by an iterative algorithm. An advantage of this
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modular approach is that the models and the algorithm can be updated separately, so
that a high level of flexibility is obtained.

This chapter focused on developing a methodology that incorporates the key character-
istics of a mixed system and an effective communication between the two time scales
of the access process and day process. Achieving numerical efficiency will be our next
challenge. For the problem instance in Section 4.6, the CAS was found using complete
enumeration. Our work is currently aimed at incorporating heuristics so that larger,
more realistic instances can be evaluated. The model structure of the day process sug-
gests that local search techniques are worth exploring (see e.g. [23, 22, 103].

Some extensions can readily be incorporated in our approach. Management is free to
choose the service level norm for the access time. As such, the resulting appointment
schedules can be compared for several service levels. Also, different choices for the time
patients are willing to wait could be studied or overbooking to anticipate for no-shows.
Furthermore, the access time for scheduled patients and the fraction of unscheduled
patients who cannot be served on the day of arrival are outcomes of model I and model
IT respectively, and serve as input for the algorithm. Of course, other model outcomes
could be chosen as well. Finally, to incorporate for example planned maintenance of a
service facility, the number of available slots in the day process can easily be amended
by closing slots. Worthwhile to consider would also be to introduce stochastic service
times and variability in the number of slots patients are willing to wait in the day pro-
cess. This might be a better reflection of reality, in particular in healthcare applications.
Last but not least, our focus will be on practical issues in the implementation of the
methodology in healthcare settings in Leiden University Medical Center and Academic
Medical Center Amsterdam.
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Chapter 5

Appointments for Care Pathway
Patients

5.1 Introduction

Care pathways have gained popularity in the healthcare sector the last two decades
[6]. A care pathway is a management tool to organize multidisciplinary care for pa-
tients with identical characteristics (i.e., disease symptoms, diagnosis, age, etcetera).
The care pathway specifies the steps in the care process [5] and routes patients along
a pre-defined path of care providers and diagnostic facilities. Patients may complete a
significant part of the path in one day. Given the vast number of hospital facilities incor-
porated in the path, planning is usually involved and hospitals tend to prioritize these
patients. It is therefore not uncommon that slots are reserved for care pathway patients
in an otherwise walk-in clinic. Examples are for instance found at diagnostic services,
such as Radiology outpatient clinics (X-ray, CT) and blood withdrawal facilities. When
these facilities are highly utilized (>85%), reserving a few slots for care pathway may
lead to a significant increase of the waiting time of walk-in patients (recall the Pollaczek-
Khintchine formula (2.2)).

In this chapter we translate the above problem setting to a queuing model. The hospital
facility decides on the number of slots that is reserved for care pathway patients. The
model then enables a trade-off between the delay for walk-in patients and the probabil-
ity that the number of slots reserved for the care pathway patients is not sufficient.

The service and hospitality industry is quite familiar with policies where a part of the
(unscheduled) customer stream is diverted and scheduled on a later moment on the
day. This concept is also known as virtual queuing (see e.g., [57, 157]). Probably the
most famous organization that employs virtual queuing is Walt Disney, that uses for
the most popular attractions in its theme parks the FastPass system [59]. Park guests
decide upon arrival at an attraction whether they want to join the waiting line, or get
a ticket (the ‘FastPass’), that gives them a time-frame to return and enter the attraction
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without waiting. To avoid a large number of no-shows and long waiting time for the
non-FastPass guests, it is only allowed to possess a FastPass ticket for one attraction
at the same time. The queuing system behind FastPass is analyzed in [116]. However,
in the FastPass system park guests are supported by information on the state of both
the regular and FastPass queue (i.e., the waiting time in the regular queue and the come
back time for the FastPass ticket) and decide upon arrival which queue they want to join.
In this chapter, the two patient types originate from separate arrival processes (walk-in
or care pathway) that determine their type and thus the queuing discipline. We have
found no evidence that the particular reservation discipline we consider has been stud-
ied before.

The remainder of this chapter is organized as follows. In the next section we describe
our queuing model, followed by the analysis in Section 5.3. In Section 5.4 we provide a
couple of numeric examples, and we conclude with the discussion in Section 5.5.

5.2 Model

For ease of notation we refer to the walk-in patients as regular patients, and to the care
pathway patients as priority patients.

5.2.1 Assumptions

We consider a hospital facility which serves regular and priority patients. Both patient
types have a deterministic service time requirement of 1 slot and arrive according to
a geometric arrival process with arrival probability ¢; and ¢, respectively. The regular
patients queue in FCFES order, while a priority patient picks, with probability p;,, upon
arrival an appointment £ slots later, L < h < H, where 1 < L < H < oo. When the
desired slot is already taken by another priority patient, the newly arrived priority pa-
tient proceeds to slot h — 1,...,L, until a slot is found that has not yet been taken by
a priority patient. When all slots in the window that precede h are taken, the priority
patient is blocked and lost. If the slot taken by the priority patient is occupied by a reg-
ular patient, then the regular patient is shifted to the first higher slot that is not taken
by a priority patient. If this slot is non-empty as well, the regular patient that was oc-
cupying this slot is shifted upwards to the first slot not taken by a priority patient, and
so on. Note that h equals the maximum number of slots the new priority patient has
to wait until his service commences. It can readily be observed that the service facility
can be modeled as a discrete-time single server queue serving priority and regular pa-
tients. Regular patients join the back of the queue. Priority patients select the last slot
in the interval (L, ..., h). Regular patients are shifted to higher queue positions when a
priority patient takes their position (see Figure 5.1). The slot pick probability p;, can fol-
low any discrete probability distribution. While the priority patients do not ‘see’ regular
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Figure 5.1: The G/D/1 queue with appointments, appointment window (L, ..., H) = (2,3,4)
and h = 3.

Regular patients
Arrival process geomteric (q)=———p
Queue in FCFS order

Deterministic service

requirement of 1 slot

Priority patients
Arrival process geometric (qz)
Pick upon arrival appointment :
slot in window {L,H}

patients, the regular patients may experience significant delay when a priority patient
joins the queue. If there is a priority patient on the first queue position at the moment of
a service completion, this patient is served. Otherwise, a regular patient will be served.
If there are no regular patients in the queue, the server is idle (even though there may
be a priority patient on a slot position higher up in the queue).

5.2.2 Matrix Structure

The transitions in the appointment window at the end of each time slot are independent
of the number of regular patients present. We therefore first define a submatrix with
the 1-step transition probabilities for priority patients. Then we define submatrices for
the 1-step transition probabilities of regular patients, which do depend on the state of
the priority patient appointment window. Finally, we combine these matrices into one
transition probability matrix.

Priority Patient Transition Probability Submatrix D

We define an appointment vector v of length H, specifying which slots contain priority
patient appointments. At most one priority patient can claim an appointment slot, so
v = (v1...vy), where v, is a binary variable, equal to 1 when slot h is reserved by
a priority patient and 0 otherwise. Note that the appointment vector v is of length H,
while the appointment window is of length H — L+1. Even though the slots (1,..., L—1)
in the appointment window can no longer be chosen by priority patients, they possibly
contain appointments and thus should be taken into account in the analysis. At the end
of each time slot v is updated; new appointments are added and existing appointments
are moved forward one slot. There are 2¥ possible combinations for v: when H = 4,
v can for example be equal to (0000), (0101), (1101), and so on. It follows immediately
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that the 1-step transition probability submatrix, D, has size 27 x 2. Deriving D can be
quite cumbersome for H > 2. We therefore present an algorithm to simplify this process.
Alternatively, D can be computed numerically using Monte Carlo simulation.

Algorithm for computation of D

Step 1. Initialization

1a. Create the 2 possible appointment combinations and order them lexicographically.

1b. Create an (empty) matrix of size 27/ x 2%, where the rows and columns represent the 2%/
lexicographically ordered possible combinations for v at time slot ¢ and ¢ + 1 respectively.

Step 2. Creating the Block Structure

The possible shifts in v at the end of each time slot lead to a unique submatrix structure. Since
at the end of each time slot the appointments are advanced one slot, all vectors with a 1-entry
(an appointment) on position , z > 1, will not have a possible transition to a vector with a 0-
entry (no appointment) one position to the left, i.e., on position z — 1. Also, since appointments
on the first position will be removed from v in the next shift, the submatrix” structure is identi-
cal for the first and second 27~! rows. Figure 5.2 shows the repetition in the structure of D for
H ={1,...,4}. In fact, for H > 3 the upper-left block of four rows and eight columns is repeated
each four rows down and eight columns to the right.

Figure 5.2: Structure of D for H = {1,...,4}

H=2/ 00 01 10 11 H=4 {0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

000 001 010 011 100 101 110 111

Step 3. Calculating the Required Number of Arrivals N

For each possible transition a certain number of priority patient arrivals, NV, is required. It follows
that for H > 3 the upper-left 4 x 8 building block is filled with the number of required arrivals,
as given in Figure 5.3, and each repetition to the right, the required number of arrivals is raised
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by one. When the first entry of v in the column of D equals 1, a minimum number of arrivals is
required to make this transition (denoted in Figure 5.3 with N = n+). When the first entry of v
equals 0, an exact number of arrivals is required to make this transition (N = n). For example,
see Figure 5.3. For the transition from (1000) to (0111) exactly 3 arrivals are required, but for the
transition from (0001) to (1011) at least 2 (2+) arrivals are required. Not only the structure of
the upper-left building block is identical for H > 3, but also the required number of arrivals (as
given in Figure 5.3) remains the same.

Figure 5.3: Required number of arrivals in D for H = 4

H=40000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Step 4. Adapting the Blocks for L > 1
If L > 1, theslots (1, ..., L — 1) cannot be claimed by priority patients. This changes the structure
of D: the blocks are halved L — 1 times. In the left half of the remaining part of the block n
arrivals are required, while in the right half n or more arrivals are required (see Figure 5.4 for an
example with H = 3and L = {1, 2, 3}).

Step 5. Calculating the Transition Probabilities

In the last step of the algorithm we need to calculate the transition probabilities P(vi — vi*1)
that fill the gray cells in D (in all white cells, no transition is possible and P(v — vi*!) = 0).
Recall that we use N to denote the number of required arrivals as given in D. The transition
probabilities are multinomial distributed and given by:

0 if vtA4 it

Y J p];IH e p]zL otherwise,
J=N " kpokg \ kr,.... kg
H
> kn=j
h=L

(5.1)

where J = N if N = nand oo if N = n+, b; is the geometric probability that j priority patients
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Figure 5.4: Structure and required number of arrivals in D for H = 3 and L = {1, 2,3}
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arrive in a time slot, given by:

b = (1 — q2)ab, (5.2)

and py, is the slot pick probability. The distribution of the j arrivals over the slots is denoted by
kr,...,kn, and for each slot h = (L, ..., H) the following should hold to ensure the j arrivals
are distributed over the slots such that v!*! is obtained:

If (v =l )=0 for h=(L,...,H—1), or vif'=0,
H-1
then k;, =0, and Z ki = Z t+1 ot )+vt+1 for h=(L,.. H-1).
i=h+1 i=h+1
If (t+1—vh+l =1 for h‘:(L,,H—l), or Ug_l:l’
H-1

then Z’%ZZ (vt —of )+t for h=(L,...,H-1), and ky>1.
i=h i=h

(5.3)
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Regular Patient Transition Probability Submatrices A*, B*, and C*

While D is the same for all possible priority patient transitions, the regular patient
transition probability submatrices, which contain the probabilities for transitions in the
number of regular patients present, m, depend on the appointment vector v. Since we
consider 1-step transitions, only the first entry of v is of interest. Three submatrices,
A*, B*, and C*, can be identified, which one to apply depends on m and v (see Figure
5.5). The submatrices given all have size 27 x 2/ and are constructed as follows. Define

First entry of v

Figure 5.5: Applicability of regular patient submatrices

No regular jobs, priority job
appointment in the next slot
Transition: m = m+j, j20
Number of regular job
arrivals required: j
Matrix: C;*

Regular jobs present, priority
job appointment in the next slot
Transition: m = m+j, j20
Number of regular job
arrivals required: j
Matrix: A;*

No regular jobs, no priority job
appointment in the next slot
Transition: m = m+j, j20
Number of regular job
arrivals required: j
Matrix: C;*

Regular jobs present, no priority
job appointment in the next slot
Transition: m = m+j, j2-1
Number of regular job
arrivals required: j+1
Matrix: Aj* (if j20), By* (if j=-1)

0

>0

Number of regular jobs m

u and w as vectors of length 2 The first 2¢~1 entries of u are equal to ¢;, and the sec-
ond 27! entries of u are equal to 1. The first 27! entries of w are equal to 1, and the
second 27~ entries of w are equal to 0. Furthermore, define e as the vector of ones, also
of length 2. Then we obtain:

A*=a;A*  where A*=u’ xe,
B; =ayB* where B*=w xe,
Ci=a;C* where C"=e" xe. (5.4)
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Since the arrival process of regular patients is geometrically distributed, the probability
a,, that m regular patients arrive in a time slot is given by:

am = (I —q)g", m=0. (5.5)

The Combined Transition Probability Matrix P

The priority and regular patient arrival processes are independent, and therefore we can
multiply D element wise with A*, B*, and C*, i.e., every (m, n)-entry of D is multiplied
with the (m,n)-entry of A*, B*, and C*, in order to obtain the transition probability
matrix P with elements A;, By, and C;, j > 0. Each entry of P is a matrix in itself of size
2 x 2% and represents the state transition (mg, v¥) — (m 1, vit).

Co Cv Cy -+ Oy
By Ao Ar o Ap
P = 0 BO AO ce Am_g

Note that A; can also be written as a;AD, where A is the diagonal matrix with the
elements of u on the diagonal. The same holds for By, which can be written as byBD,
where B is the diagonal matrix with the elements of w on the diagonal, and for Cj,
which can be written as ¢;C D, where C is the diagonal matrix with the elements of e on
the diagonal.

5.3 Analysis

The matrix P shows similarities with the transition probability matrix for the M/G/1
queue embedded at departure moments (see [142] for further reference). An overview
of discrete time queuing systems can be found in [30]. Several priority disciplines have
been studied for discrete time queuing models, but these are usually related to the non-
preemptive [195] or preemptive resume priority disciplines [183]. In [194] a different,
but related, service discipline is considered, where a slot is reserved for regular patients
at the end of the queue. In the case of high load traffic from priority patients, it is then
guaranteed that regular patients receive service as well.

5.3.1 Stability of the Queue

In order for the queue to be stable, the mean load, p, should be less than one. Since the
service time is 1 slot, p equals the sum of the mean number of regular patient arrivals
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per slot and the accepted priority patients per slot:

q1 +(1—PB2) q2

= < 1, 5.6
P I—aq I —q (5.6)

It is necessary that ¢; < 3, but not sufficient since the number of accepted priority pa-
tients per slot also depends on the blocking probability for priority patients, Pp,. The
latter is calculated as follows. A priority patient is accepted when the slot &, picked
with probability py, is still available, or if not, when one of the slots (L, ..., h — 1) is still
available. The blocking probability for priority patients is therefore given by:

Pg, =1—py, - Z P(vi — v . (5.7)

vt —ottl:
vf+1<h

s

7

5.3.2 Vector Generating Function of Equilibrium Probabilities 7 (m, v)

We derive the vector generating function of the equilibrium probability 7(m,v) for the
number of regular patients present, m, and the realization of the appointment vector, v.
For notation purposes, denote 7(m, v) by the vector 7, where s = (0,1,...). Using the
property IIP = 1I, we obtain:

g = 7T()CS + Z ﬂ-iAs—i + ’7T5+1B0 for s > 1, and (58)
i=1
o = 7T()Co + 77'1307 where Z 7TseT = 1. (59)
s=0

Define the vector generating function for 7, Pr(2), as:
Pu(z) = i Te2®. (5.10)
5=0
Furthermore, define:
A(z) = iAszs, and C(z) = f: Cs2°. (5.11)
s=0 5=0

Multiplying both sides of (5.8) with the scalar z*, where |z| < 1, and summing the result
for s = (0,...,00), we obtain:

d et = i ToCl2® + i Z TiAs_i2® + i Tes1B07°, (5.12)
s=0

s=1 =1 s=0
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and it follows that:
Pu(z) = m0(2)+ Pu(2)A(2) — moA(2) + Boz ' Pu(2) — moBoz * . (5.13)
Multiplication of (5.13) with z and rearranging terms gives:

Pu(2) |21 — zA(2) — Bo) = mo[2C(2) — zA(2) — By (5.14)

5.3.3 Mean Number of Regular Patients Present

We derive the mean number of regular patients in the queue, E[L|, by following the
analysis from [142], pp. 143-148. Let =z = 1. First we list the relations we already have.

E[Lg] = Pi(1)e"
E[Lg|7™ = Ph(1)e"7r™
Py(l) = 7
Pi(l)el =1
AQ)+By, = C(1)=D
Del = el (5.15)

where 7% is the vector with the equilibrium probabilities of the number of priority pa-
tients in the queue, which can be obtained from 7D = 7. The first derivative of (5.14)
with respect to z is:

Ph(z) [z — zA(z) — Bo] + Pu(2) [I — A(2) — zA'(2)]
=7 [C(2) + 2C"(2) — A(2) — zA'(2)]. (5.16)

For z = 1, it follows that:
Py(1)[I = D]+ 7> [I = A(1) = A(1)] = mo [C(1) + C'(1) — A1) = A'(1)].
(5.17)
Denote [I —D+e"r>*] by U and [I — ﬁle] by K. Furthermore, note that
[ﬁD — ﬁle} is equal to BD. By adding P} (1)e” 7> = E[Lg|7> we obtain:

qi
I —q

Ph(1) [I-D+e"n®] +7% [[—AD— AD]

R[Lpr™ +m {D+ “_p_ap-_® AD}
1—q I—aq

1

l—aq

1 1
D—

I—q I—q

Pi(1) [I-D+e"n™] +7% {I — AD]

= E[LR]WOO + 7o |: AD:| . (518)
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From Theorem 5.1.3 in [106] it follows directly that the matrix U is invertible. We then
have that 7°U~! = 7* and thus:

PL(1) =E[Lg)7™ + mBDU ' — 7 KU (5.19)
Multiplying with ' it follows that:
noBDe’ = 7r*Ke’. (5.20)

By taking the second derivative of (5.14) with respect to z, setting z = 1 and multiplying
with e’ we obtain:

PY(1) [I — D]e” +2P;(1)Ke"

2q1 2 _
= 7% {—Ae ] + 7o { N BDeT} . (5.21)
(1—q)? 1—q

Since Pj(1) [I — D] e” =0 we get:

Ph(DKe" = I —rde” 4

— = moBDe”. 5.22
(1 - Q1)2 — 1 0 ( )

Now we combine (5.19) and (5.22) to obtain an expression for E[Lg|:

E[Lg]m °°Ke
= —A+KU 'K eT+7TOBD|: n I—U‘IK} e’
(1—Q1) I—q
_ 3¢ — 1
= 7 u—q)A+KU 1K el + mBDU ! L‘h . e’ + (e wT)}
— 41 - 41
_ 3¢ —1
=™ WA+KU 'K eT+7rOB[1q1 . eT+DU-1(eT—wT)].
- 41 — 41

(5.23)

Using (5.20) this simplifies to:

E[Lp]m*Ke" = 7> [—A + KU 'K + K] el — mBDU'w”
(1—aq)? l—aq
(5.24)
and
- - 2
E[Lg] = {w“’ [—A + KU~ 1K] — WOBDU_le} [x>KeT] " + 2
(1 - ql) 1 — 1

(5.25)
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The second and higher moments of E[L | can be computed using the same approach.

In expression (5.25) there is still an unknown, 7,. We suggest two approximations for
7o and thus for E[Lg]. Since the load for regular patients is high and therefore the prob-
ability that the server is idle while there are priority patients in the queue is low, the
first approximation is obtained by 7y = (1 — p)7*>°. The second approximation is to set
moBDU'wT = 0. We use simulation (see Table 5.1) to determine which of the two ap-
proximations is most accurate in terms of the parameter values of our problem setting,
i.e., a high load for regular patients (¢; = 0.45) and a low to moderate load for priority
patients (g2 = 0.10). The slot pick probability pj, is uniform distributed. We also give the
load pg that follows from the simulation.

Table 5.1: Comparing the values of E[Lp] that follow from the simulation and approximations

Case L H ps E[LRg] |0] with sim.
Sim. Approx.1 Approx. 2 Approx. 1 Approx. 2
1 1 1 09171 10.1 10.1 10.9 0.0 0.8
2 1 3 09250 | 11.0 11.2 12.0 0.2 1.0
3 1 5 09270 | 115 11.5 12.3 0.0 0.8
4 3 3 09171 9.9 10.1 10.9 0.2 1.0
5 3 5 09250 | 11.2 11.2 12.0 0.0 0.8
6 5 5 09170 | 10.0 10.2 109 0.2 0.7

The mean number of regular patients in the queue in the simulation, E[Lg]s, was calcu-
lated by simulating a period of 100,000 slots (so that there would be ~ 10,000 priority
patient arrivals), preceded by a warm-up period of 1,000 slots. When in run n,

> i  E[LR]si >y E[Lgs.
n n—1

< €, (5.26)

the simulation would stop. For ¢ a value of e~ ! was chosen, which corresponds in the
case of ten minute slots to an error margin of one minute. We see that the first approxi-
mation is more accurate with a maximum error in the six test cases of 0.2 (2 minutes).

5.3.4 Mean Waiting Time for Regular Patients

Even though the regular patients may experience additional delay when a priority pa-
tient takes their spot, the mean waiting time for regular patients, E[IWg]|, can still be
calculated using Little’s law. This is because the queuing discipline for the regular pa-
tients is FCFS and therefore the order in the queue for regular patients does not change
when a priority patient arrives and picks a slot in the appointment window. The mean
waiting time is therefore equal to the sojourn time (which is calculated using the mean
number of regular patients present, E[Lg|, and the mean throughput of regular patients
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per slot, p1, minus one slot):

E[Lg]
P1

E[Wg] = —1, where p, =

5.4 Results

q1
I—q

97

(5.27)

To generate the results presented in this section, we use the first (most accurate) approx-
imation of my = (1 — p)7>. We use the same parameter values as in the previous section,

i.e., q1 = 045, Q2 = 0.10.

5.4.1 The Effect of the Size and Position of the Appointment Window

In Table 5.2 we see the effect of the size and position of the appointment window on
the waiting time for regular patients, E[IWy], and the blocking probability for priority
patients, Pp,. As is also apparent from Figure 5.6, E[Wj| increases and Pp, decreases
when the appointment window becomes larger and is positioned further away from

the first position in the queue.

Table 5.2: Results for various positions and sizes of the appointment window

L H E[lLg] E[Wg] Pz,

1 1 10.1 11.3 0.1111
1 2 10.8 12.2 0.0406
1 3 11.2 12.7  0.0184
1 4 11.4 12.9 0.0098
1 5 11.5 13.0 0.0064
2 2 10.1 11.3 0.0557
2 3 10.8 12.2 0.0244
2 4 11.2 12.7  0.0120
2 5 11.4 12.9 0.0070
3 3 10.1 11.4 0.0372
3 4 10.8 12.2 0.0176
3 5 11.2 12.7  0.0088
4 4 10.2 11.5 0.0282
4 5 10.8 12.3 0.0132
5 5 10.2 114 0.0224

5.4.2 Comparison with the Non-Priority Queue

We compute E[L] for the same queuing system, but now the queue discipline is FCFS
for both regular and priority patients (we still refer to priority patients, even though
these (care pathway) patients do not have priority anymore), and there is no blocking
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Figure 5.6: Waiting time for regular patients, E[Wg]|, versus blocking probability for priority
patients, Pp,
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of priority patients. The expected number of patients at the facility, E[L], is given by
lim, ,; P}(z), where it is easy to derive that P(z) in this case is given by:

Pa(z) = (1 p>%, (5.28)
so that
B (1 2¢O =G 6 529

2(G'(1) — 1)

In case of absence of the priority patients we have that G'(1) = p; and G”(1) = p?, and
thus E[L] = E[Lg] = 2.7 (note that p in (5.29) is equal to p;). If the priority patients also
arrive at the facility, G(z) is the product of the two probability generating functions of
the independent geometric arrival processes, and thus G'(1) = p; + po, and G”(1) =
2p% + 2p1pe + 2p3 (note that p in (5.29) is equal to p; + p2). We obtain E[L] = 11.9, and
E[Lg] = JE-E[L] = 10.5, E[W] = 11.8. So even though priority patients are not blocked,
the mean waiting time for regular patients is shorter. Only a priority discipline where a
single slot is reserved for priority patients results in a slightly shorter waiting time for

regular patients (see Table 5.2).
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5.5 Discussion

In this chapter we analyzed the single server queue in discrete time with two types of
patients. Both patient types arrive according to a geometric arrival process and have
a service requirement of 1 slot. Priority patients claim upon arrival an empty slot, A,
(‘appointment’) in a pre-defined appointment window, and have absolute priority over
regular patients. We have derived the blocking probability for priority patients and
the mean waiting time for regular patients. The methodology we developed is mainly
meant as a capacity planning tool, so that managers can study the effect of for instance
the values of the lower and upper bound of the appointment window. In reality, a steady
state situation, especially in an environment that does not offer 24/7 service such as an
outpatient clinic, will maybe not be reached. However, given the managerial insights
that the methodology gives, we still feel it can be very valuable in these cases.

Throughout the chapter we assumed that when h was already taken, the claim of the
new arrived priority patient is advanced to slot (h—1, ..., L), until a free slot was found.
It is straightforward to analyze the queue where the claims are set back to slots (h +
1,...,H). Also the possibility to choose any distribution for the slot pick probability,
pr, introduces a lot of flexibility. The choice for the distribution of p, will especially
influence the mean waiting time for regular patients. For example, the case where py =
L,pn =0 V h # H, makes maximal use of the appointment window in the case that
the slots are advanced when a picked slot is already claimed, and thus E[Wy] will be
larger than in the case that py # 1.

The effect of increasing H gradually reduces when H becomes larger, and will lead to
computational issues. Currently, the computations for E[Lp] using a software program
such as Matlab become already quite involved for H ~ 10. This is not necessarily a
problem and allows for analysis of many problem instances, but deserves attention in
future research. The symmetry in D might be useful to simplify the analysis and size of
the solution space. Note that simulation has the same computational limitations.

Of course, the size of appointment window (L, ..., H) has a significant influence on
both the priority patient blocking probability, Pg,, and the regular patient waiting time,
E[Wg]. When the window size H — L + 1 is decreased, Pp, will increase but E[Wjy]
will decrease. It is obvious that the trade-off between these two competing performance
measures lies exactly here. A rule of thumb that comes into mind from the Subsection
5.4.2 and the graph in Figure 5.6, is that by reserving one slot for priority patients a
few slots (3-5) from the first queue position, results in acceptable outcomes for both
the waiting time for regular patients and the blocking probability for priority patients.
However, a mean waiting time of over 11 slots (also in the case without priorities) is
quite long, so the load of the system should be subject of study as well. In future re-
search we plan to further investigate the exact trade-off and come to a rule of thumb.
Furthermore, we plan to analyze queuing networks consisting of this type of queues.
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Chapter 6

Allocating MRI Scan Capacity

6.1 Introduction

We consider an MRI scanning facility run by a Radiology department, that has to dis-
tribute MRI scan capacity among several competing hospital departments. The depart-
ments have private information regarding their future demands. For a fair allocation,
Radiology depends on the information that the departments provide. How can the Ra-
diology department motivate the users to give an honest forecast of their demands in
order to ensure a fair allocation?

Various types of MRI scans exist, each used to inspect different parts of the body [143].
Examples are scans of the heart, breasts, nervous system, and bones. It is common prac-
tice in most hospitals to dedicate adjacent time slots (blocks) in the appointment sched-
ule to identical MRI types. The demand for MRI scans can vary widely over time, espe-
cially in academic institutions. New treatment protocols may result in an in- or decrease
of MRI requests; the same holds for the recruitment of new patient cohorts and changes
in the hospital’s patient mix. This asks for a periodical allocation of MRI capacity. For
this it is common that hospital departments provide Radiology with a demand forecast
for the next period. Overestimating demand may be tempting, since it is likely that this
leads to a larger share of the scarce capacity. The quality of the MRI schedule depends
on the quality of the forecast. It is therefore essential for the Radiology department that
hospital departments put maximum effort into providing a reliable and honest forecast,
and do not over- or underestimate their demand.

6.1.1 Problem Example
We illustrate the necessity of a reliable and honest forecast with an example of a facility
with two scanning types. For the first scanning type, a forecast that is lower than the

actual demand for the next period is provided. For the other scanning type, a forecast

101
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that is higher than the actual demand for the next period is provided. Suppose that
the capacity allocated by Radiology equals the forecast of demand. Then for the first
scanning type, a waiting list develops because of incorrect allocation (Figure 6.2(a)). For
the second scanning type, not all allocated capacity is needed and thus the scanner sits
idle (Figure 6.2(b)). We see that it is very well possible that in the same period, the MRI

Figure 6.1: Example for two scanning types

Forecast of demand Forecast of demand
Allocated capacity Allocated capacity
Actual demand Actual demand
Surplus Surplus
Waiting list caused by Scanner sits idle

incorrect allocation

(a) Scanning type 1 (b) Scanning type 2

scanners are idle during certain blocks due to less actual demand for one type of scans,
while at the same time the waiting list for another scan type increases caused by a lack
of capacity.

6.1.2 Approach

The problem of capacity allocation to multiple competing users, as sketched above, has
several key properties. Namely (i) the users do not cooperate, (ii) the actual demands
of the users are private information, and (iii) the resource wants the users to truthfully
reveal their actual demand. Relevant models that capture these properties are combi-
natorial auction models [51], where multiple bidders can place bids on several items
at the same time, and Bayesian games [87]-[89], non-cooperative games where each
player has incomplete information about the characteristics of the other users. While a
Bayesian game model uses only information on the user’s demand, in a combinatorial
auction also the price the users are willing to pay is required. This, combined with the
relatively simple analysis of the Bayesian game model compared to that of the combi-
natorial auction model, determined our choice for the Bayesian game approach. We are
interested in conditions under which the users tell the truth, that is, they provide the
resource with their actual demand.
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6.1.3 Literature

Bayesian Games are extensively described by Harsanyi [87]-[89]. For an introduction
on this class of games we refer the reader to [71]. In the literature on Bayesian games,
two types of models are often studied. In the first type of model a single resource com-
municates with several users. The users do not cooperate, and the resource has private
information. An application of this model is given in [90]. In the second type of model a
single resource communicates with a single user. Now, the user has private information.
Examples can for instance be found in [168, 207]. Unlike these types of models, we con-
sider a single resource and multiple non-cooperative users with private information. To
the best of our knowledge, this has hardly been studied so far.

There is a vast body of literature on capacity allocation with truth-telling in the area
of supply chain management, see for example [37, 132, 206]. The main research ques-
tions are how a supplier should allocate his capacity, and how the supplier can induce
his buyers to reveal their private information. Furthermore, many papers on capacity
and/or resource allocation in health care are available, such as [192], but these do not
consider private information and truth-telling. This chapter contributes to the literature
by studying capacity allocation under private information in a health care setting.

Several other problems in a health care context have been studied using Bayesian Games.
An application area is the patient-doctor relationship, where either the patient [207] or
the doctor [178] has private information. Another example is given in [193], where the
authors consider the principle of kidney exchange. Patients waiting for a kidney trans-
plant present one or more potential donors. These donors however are not a match to
the patient they are related to. In order to find matching pairs, an exchange group of sev-
eral patients and their donors is formed. In the paper it is demonstrated with a Bayesian
Game that it is advantageous in some cases for patients not to reveal all information they
possess about their donors. In [16] an economic application is given. Multiple hospitals
are regulated by a central authority; hospitals do not cooperate with each other. The
regulator has incomplete information on the production information hospitals possess.
A Bayesian Game is used to study the effect of the information gap on the production
contracts the regulator offers the hospitals. We conclude this paragraph with mention-
ing [139], in which the international trading and pricing of pharmaceuticals is studied.
The author suggests to introduce asymmetric information with respect to the local de-
mand function of the country the products are sold to. When the problem is modeled as
a Bayesian Game, it can be shown that in equilibrium parallel imports of pharmaceuti-
cals occur, in contrast to the complete information situation.

6.1.4 Contents of Paper

Since the approach is not limited to the MRI scan example, we use generic terminology
(resources and users) in Sections 6.2-6.4. First we provide a detailed description of the
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model. In the Results sections that follows we show that for two allocation mechanisms
an optimal strategy for users is to provide an honest forecast of their demand, which
enables the resource to make a fair allocation. We demonstrate the approach with a
numerical example in Section 6.5. We conclude with the discussion and conclusions
section.

6.2 Model

In this section we formulate the Bayesian Game. An overview of the notation intro-
duced is given in Table 6.1. The allocation of capacity goes as follows. Users provide

Table 6.1: Notation introduced in Model section

Symbol Description

C Total amount of capacity available

F; Forecast of demand by user i (i.e. request to resource)
A; Capacity allocated to user ¢

D; Actual demand of user ¢

x Reward per unit of allocated capacity

Yy Penalty cost per unit of surplus capacity

their forecast F; for the next period. The resource allocates capacity, resulting in an allo-
cated amount A; per user. During the period the users reveal their actual demand. This
process is repeated each period. We make the following assumptions:

(i) All users make rational choices, i.e. they want to maximize benefits and minimize
costs.

(ii) The total amount requested by the users exceeds the resource’s capacity: > _; F; >
C.

(iii) The shared resource cannot allocate more capacity than is available: 3, A; < C.

(iv) No user has an actual demand that is higher than the resource’s capacity: 0 < D; <
C.

(v) No user has any information about the private demand of any other user. Let
D_; = {D;},+ represent the demands of users other than user i. We model the
knowledge of user i by the uniform distribution on [0, C]"!:

if D_;elo,C]",

else; (6.1)

1
pi(D_;) = { 6;"71’

thus all demands are equally likely.
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6.2.1 Utility Function

User 7 has a utility function V; that measures the immediate happiness or reward [191].
The reward is the weighted difference between the allocated amount A; and a penalty
for overestimation. The weights are = per unit of allocated capacity and y per unit that
is overestimated, =,y > 0. The utility function for user i is given by:

Vi = zA; —ymax{F;, — D;,0}. (6.2)

Each user aims to maximize its utility.

6.2.2 The Allocation Mechanism

The resource needs an allocation mechanism to distribute the capacity over the users.
Desirable properties of an allocation mechanism are:

(i) Each user receives a nonnegative amount: A; > 0.

(ii) All capacity is allocated: ) A, = C.
J

(iii) Each user receives at most the amount it requests: A; < F;.

(iv) If the capacity of the resource increases, then all users should obtain more (until
they reach their forecast): A; is increasing in C.

Many allocation mechanisms satisfy these properties. Three mechanisms that are used
often in practice are the proportional rule, the constrained equal award rule and the
constrained equal loss rule [186]. The proportional rule allocates capacity proportional
to the forecasts:

E:

A==
> F
J

C. (6.3)

The constrained equal award rule divides the capacity equally among the users, with
the constraint that a user cannot obtain more than was requested:

A; = min{a, F;}, (6.4)

with a such that  ; A; = C. Third, the constrained equal loss rule divides the shortage
of capacity equally among the users such that any user receives a nonnegative amount:

A; = max{F;, — 3,0}, (6.5)

with fsuch that ) A; = C.
J
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6.2.3 Bayesian Game Formulation

Now we formulate the problem as a Bayesian game. Each user provides a forecast F;,
which is a function of his private actual demand D,. We write F;(D;) to denote this
dependency. This forecast reflects the claim of user i on the available capacity. The
allocated capacity A; depends on all requests F;(D;), j = 1,..., N, and hence also
on all the private demands. The goal of each user is to maximize his expected util-
ity by selecting a suitable strategy. A strategy F;(D;) of user i specifies which forecast
the user should announce as a function of its private information D,. The strategies
F* = (F}{(Dy),...,F%(Dy)) are a so-called Bayesian Nash equilibrium if for each user
i and for any private demand D; the requested number of units F;*(D;) maximizes the
expected utility of the user:

F(D;) = arg max / Vi(F*,, Fi: Dy)ps(D_)dD_s, 6.6)
(0,071

i i

where (F*,, F;) denotes the strategies F* in which the strategy F;*(D;) of user i is re-
placed by F;, D_; = {D;}; is the collection of private demands for users other than
i, and p;(D_;) is the prior belief of user : about D_; [146]. Hence, given the uncertainty
on the private demands of the other users, it does not pay for user i to deviate from his
equilibrium strategy because that will result in lower expected utility.

6.3 Results for Proportional Rule

In this section the capacity is allocated according to the proportional rule. Then the
utility function of user i is:

r
Vi(F; D) = 1 ==—C — ymax{F; — D;,0}, (6.7)
2 F;
j
which depends on the demands F' = {F},..., Fx} of all users, and on the user’s pri-

vately known actual demand D,. We show that when the number of users exceeds 3,
it is optimal for the users to provide an honest forecast. When the number of users is
equal to 2 or 3, the same result holds under weak conditions.

6.3.1 Equal Cost and Reward Parameters

To simplify calculations, we set = y = 1 in the utility function, so V;(F; D;) = ZF iFJ_ C—
max{F; — D;,0} (we consider other cost and reward parameters in section 6.3.2). We

investigate when truth-telling, F;(D;) = D;, is a Bayesian Nash equilibrium. Without
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loss of generality we consider user i = 1. His expected utility, given that the other users
truthfully reveal their demand, equals:

— (- maX{Fl Dl,O}
C F1+Z D;
E[Vi(F;D;)] = / / CN_l dD,---dDy

= / / 2---dDN—max{F1 —Dl,O}.
0 F1+ZD

(6.8)

To analyze when truth-telling maximizes this expected utility, we calculate the deriva-
tive with respect to F. The values of F; where the derivative equals zero or does not
exist, and the boundary values 0 and C are candidate values for a maximum. If the
derivative equals zero for some value F; then we use the second derivative of the ex-
pected utility to check whether this value is indeed a maximum or minimum. We begin
with stating a preliminary result on these derivatives and their properties.

Theorem 6.3.1 Consider the situation with N users. The derivative of the expected utility
equals:

SE[V; (F; D 1 /(¢ © =7
[18(F1 1>]:CN2/0 /O 2 AD,--dDy — g opy). (6.9)

where 1 is the indicator function of the event E that takes the value 1 if E is true and 0
otherwise. This derivative is positive if F; < D;; the expected utility is then increasing in F;. The
second derivative of the expected utility,

N
—2% D,
O*E[V4(F; D 1 ¢ ¢ S
[5572 ol _ CN2/ / —JNQ dD,---dDy, (6.10)
' ’ " (R + Y Dy)?
j=2

is always negative. So, the derivative of the expected utility is decreasing in F;, in particular for
F; > D;.
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Proof Without loss of generality let ¢ = 1. If F} < D, then the derivative (6.9) reduces
to:

N
1 /C c };Q
o [ [ —anany, (6.11)
(F1+ > Dj)?
=2

which is always positive; the expected utility is increasing in Fj. It is easy to see that the
second derivative (6.10) is negative. Hence, the derivative (6.9) of the expected utility is
decreasing in F}, in particular for F} > D;. |

According to this theorem, the expected utility is increasing if /; < D;. Therefore, user
1 wants to set F as large as possible. Because F; < D, user 1 sets F; = D; in the limit.

Also by Theorem 6.3.1 the derivative of the expected utility is decreasing in F;. Now
if this derivative is negative for all forecasts F; > D;, then the expected utility is de-
creasing in F}. So, user 1 wants to choose F; as small as possible. Because F; > D, user
1 wants to select F; = D, in the limit. In this case we conclude that truth-telling is a
Bayesian Nash Equilibrium; user 1 always tells the truth.

In the next subsections we investigate for several numbers of users when the derivative
of the expected utility for F; > D, is indeed negative, and under which conditions truth-
telling is an equilibrium.

Truth-telling in Case of Two Users

In this section we analyze the allocation problem with two users. Then the derivative
(6.9) of the expected utility for I, > D, equals:

C
D, F+C F
2 4D, —1=1 + _9, 6.12
A(E+Dﬁ 2 n( £ > F+C (6.12)

We want to know for which values of Fj this derivative is negative. If so, then the ex-
pected utility of user 1 is decreasing and this user will select F; = D; — the truth-telling
outcome — to maximize its expected utility.

Theorem 6.3.2 Consider the situation with two users. Truth-telling is a Bayesian Nash equi-
librium if the private demand of any user is at least 18.9% of the total capacity.
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Proof Without loss of generality consider user i = 1. By Theorem 6.3.1, the derivative
(6.12) is a decreasing function in Fj. This derivative is negative for all requests F} €
(Dy, C]if it is negative for F; = D;:

D, +C D,
1 —2<0. 6.13
n( Dy )+D1+C - (6.13)

This inequality holds if D, > b,C with by, ~ 0.189, where b, is such that the derivative
(6.12) is equal to zero for Fy = boC. |

In other words, the private demand of either of the two users should be larger than
roughly one-fifth of the capacity of the resource. The lower bound of 18.9% on the pro-
portion of privately known demand to the resource’s capacity may be too restrictive.
What happens if this lower bound is not met for user ¢, so D; < 0.189C? According
to the analysis in the proof of Theorem 6.3.2 the expected utility of this user is maxi-
mal in forecast F; ~ 0.189C. This forecast is larger than the actual demand D;; user i
overestimates its private demand.

Truth-telling in Case of Three and More Users

For three to six users, the results are as follows.

Theorem 6.3.3 Truth-telling is a Bayesian Nash equilibrium for N = 3 users if the private
demand of any user is at least 8.0% of the total capacity. For N = 4,5, and 6 users, truth-telling
is a Bayesian Nash equilibrium.

Proof First consider N = 3 users. Without loss of generality focus on user 1 and on the
case Fy > D;. According to (6.9), the derivative of the expected utility of user 1 equals:

1 [¢ ¢ Dy + Ds
— dDydDs — 1
O/O /0 (Fi + Dy + Dg)2 207

oF ([ F\(F +20) Fy+2C
1 21 -1 14
¢ n( (Fy +C)? e F+C (6.14)

We know from Theorem 6.3.1 that this expression is decreasing in Fj. Hence, truth-
telling is a Bayesian Nash equilibrium if this expression is non-positive for F; = Dy,

2D, . [ Dy(Dy +2C) Dy +2C
1 o (217200 Ly <, 1
c n( D0 )T\ hiro =0 (615

Numerical evaluation by Waterloo Maple version 14, reveals that this inequality holds
if Dy > bsC with b ~ 0.080.
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For the situation with more than three users, the complexity of the derivatives (6.9)
increases rapidly. We once again use Theorem 6.3.1 to establish that truth-telling is a
Bayesian Nash equilibrium if the first derivative is non-positive for /; = D;. Numerical
evaluation reveals that the inequality is satisfied for N users for all D; > 0. Hence,
truth-telling is always a Bayesian Nash equilibrium for four till six users. n

Hence, for a Bayesian Nash equilibrium in a situation with three users, we have a lower
bound on the demand per user. Note that this bound is smaller than the bound in the
situation with two users. The lower bound disappears if we consider at least four users.
For situations with 7 users, we were not able to perform the necessary calculations
within reasonable time limits. We therefore conducted a simulation study. We tested
10 cases, for I = 7-10, 12, 15, 20, 30, 50 and 100 departments. In each case, we used a
fixed capacity C equal' to 2500, and randomly drew from a uniform (0, C) distribution
the forecast and demand values for / — 1 departments. Then for the remaining depart-
ment 7 we checked whether it was optimal, given the utility function (6.7), to provide
a forecast that was equal to the demand. We tested each case 1000 times, and for all
10x1000 = 10,000 instances truth-telling was an optimal strategy for the department we
studied. Based on these results, we conjecture the following proposition.

Proposition 6.3.4 If there are more than 6 users, then truth-telling is a Bayesian Nash equilib-
rium.

Note that truth-telling is not a unique Bayesian Nash equilibrium, since there is another
(trivial) Bayesian Nash equilibrium, namely F; = 0 for all <. However, this is not of any
practical value considering the problem setting.

6.3.2 Different Cost and Reward Parameters

In this section we return to the general utility function V;(F'; D;) without the restriction
x = y = 1. We analyze what happens to the lower bounds on the actual demands of
the departments, as stated in the theorems 6.3.2 and 6.3.3. The expected utility for user
1 now equals:

E[Vi(F; D)) = sy / / dD,-dDy —y(Fi — D))", (6.16)
0
F1+ED

The following theorem generalizes Theorem 6.3.1, and is therefore presented without
proof.

'The value of C = 2500 is based on the average capacity of one MRI scanner per year, given that it
operates 50 weeks/year for 10 hours/working day, processing scans that on average take one hour.
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Theorem 6.3.5 Consider the situation with N users. The derivative of the expected utility:

OE[V;(F; Dy)]
[ 18<F ! CN 2/ / d 2"'dDN—y]l{F1>D1}7 (617)
! O (R + ZD

=2

is positive if F; < D;; the expected utility is then increasing in F;. The second derivative of the
expected utility:

2 —2 z D;
) E[‘G(FQ’; Dy)] _ / / d y---dDy, (6.18)
8F1 0 Fl + Z D

is negative. The derivative of the expected utility is decreasing in F;, in particular for F; > D;.

First, consider NV = 2 users. According to Theorem 6.3.5, the expected utility is increas-
ing for F; < D;. Hence, user 1 chooses Fi(D,) = D; in the limit in case F} < D;. If
Fy > D, then the derivative of the expected utility equals:

F+C Fy
1 1) = 6.19
o((P5) s 5o -1) - w (619)
which is a generalization of (6.12). Also by Theorem 6.3.5, this derivative is decreasing
in F;. Hence, if it is non positive for F; = D, then it takes negative values for all /7 > D;.

This happens if D; > b,C where the lower bound b, is a root of expression (6.19) after
substituting F; = b,C'. Thus b, solves:

by + 1 by
e yle—0 2
ln( b, )+b2+1 1—y/x=0 (6.20)

This equation shows that lower bound b, is a function of y/z, the relative value of the
‘cost’ parameter y to the ‘reward’ parameter z (see Figure 6.2).

Observe that for y/z = 1 the lower bound b, agrees with the result in Theorem 6.3.2.
If y/x increases then the penalty function with weight y becomes more and more im-
portant compared to the value of the allocated capacity with weight . Since the user
adds so much relative value to the penalty, truth-telling more and more easily becomes
a Bayesian Nash equilibrium. The lower bound b, decreases, and in particular, b, tends
to zero as y/x increases.

We perform the same analysis for situations with three and four users, see Figure 6.3.
For three users, the lower bound b5 is positive as long as y/x < 1.3. For larger values
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Figure 6.2: Lower bound b as a function of y/x.
161
1.4
1.2

1 .

b2 g3
0.6
0.4

0.2

£
B
000000
ooooooooooo

A T

of y/x there is no positive solution to (6.20). Thus, if y/z > 1.3 then truth-telling is
always a Bayesian Nash equilibrium; there is no lower bound on the demand of the
users to ensure an equilibrium. We observe the same for four users. The lower bound
by is positive for y/x < 0.8. For larger values of y/x truth-telling is always a Bayesian
Nash equilibrium. The analysis for five and more users goes along the same lines, and
is therefore omitted.

6.4 Results for Constrained Rules

In this section we analyze the effects of capacity allocation when using the constrained
equal award rule or the constrained equal loss rule.

6.4.1 Results for Constrained Equal Award Rule

If the capacity is allocated according to the constrained equal award rule, then the utility
function of user i is:

Vi(F; D;) = zmin{a, F;} — ymax{F; — D;,0}, (6.21)

with a such that ) | min{e, F;} = C. Consider the situation with two users. For simplifi-
J
cations we set x = y = 1 in the utility function. Without loss of generality consider user
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Figure 6.3: The lower bounds by C for N = 3 and N = 4 users as a function of y/x.
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(a) Lower bound b3 for 3 users. (b) Lower bound b4 for 4 users.

i = 1. Assume the second user is truthful, F5(D,) = D,. Then:

C/2,  Fi>CJ2, Dy>CJ2
C—F, F,<C/2<D,,
C—DQ, D2<C/2§F1,
0/2, F1<O/2,D2<O/2

(6.22)

We investigate if and when truth-telling is a Bayesian Nash equilibrium.

Theorem 6.4.1 Consider the constrained equal award rule and N = 2 users. Then truth-telling
is a Bayesian Nash equilibrium.

Proof First, if F} < C/2 then:
© 1
E[‘/l(F, Dl)] = / (min{a, Fl} — max{Fl — D17 0}) EdDQ
0

1 C
= E/ FldDQ - maX{Fl - Dla O}
0

= F1 - max{Fl - D17 0} (623)
Second, for F; > C'/2:
1 C—-F 1 c/2
E[Vi(F; Dy)] = —/ FidD, + —/ (C' — Dy)dDs
¢ Jo CJo-r
1 (1
+ = _CdD2 - max{Fl - Dl, 0}
N {F, — Dy,0} (6.24)
= °C 1 3 max 1 1, . .
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The derivative of the expected utility of user 1 is:

8IE[V1(F, Dl)] _ { 1— ]1{F1>D1}7 F < 0/27

6.25
aF‘l _%+1_]1{F1>D1}7 Fl >O/2 ( )

First consider D; < C/2.If F; < (/2 then the maximal expected utility is D, for F} €
[Dy,C/2]. If Fi > C/2 then the maximal utility in the limit for /4 — C/2 is also D;.
Hence, there are multiple best replies for user 1. Truth-telling is an equilibrium.

Second, consider D; > C/2. If F; < C/2 then the maximal expected utility is C'/2 for
Fy = C/2. For F; > C/2 the maximal expected utility is 2C for F € (C/2, D). Hence,
given F, = D, the best reply of user 1 is to set £} such that C/2 < F} < D;. Truth-telling
is a mutual best reply. Therefore, truth-telling is a Bayesian Nash equilibrium. |

Under the constrained equal award rule, truth-telling is an equilibrium, but it is hard
to determine the other equilibria. Furthermore, the analysis of the constrained equal
award rule increases in complexity with the number of users. Therefore, the resource
might prefer the proportional rule. For this reason, we restrict our analysis of this rule
to the case of two users.

6.4.2 Results for Constrained Equal Loss Rule

When using the constrained equal loss rule, the utility function of user i is:
Vi(F; D;) = zmax{F; — 8,0} — ymax{F; — D;,0}, (6.26)

with g such that > i max{F;—/,0} = C. Consider a situation with two users. At first, we
set z = y = 1 in the utility function for simplicity. Assume the second user is truthful,
F, = D,. Then:

p= %(E + Dy - C) (6.27)

is the equal amount of loss for both users. We investigate if and when truth-telling is a
Bayesian Nash equilibrium. Without loss of generality consider user 1.

Theorem 6.4.2 Consider the constrained equal loss rule and N = 2 users. Then truth-telling
is a Bayesian Nash equilibrium.

Proof Since

1

Ql

c
/ max{F; — 3,0}dD,
0

1 [eh 1 /¢ 1
= — FiydD — —(Fy — D dD
C/o 1d 2+C/CF12(1 s + C)dDy

= F\ - F?/(40), (6.28)
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the expected utility of user 1 equals:
F2
E[Vi(F; D)) = F, — ﬁ — max{F, — Dy,0}. (6.29)

The derivative with respect to F; is:
=1—-—= —1{p>ny- (6.30)

The expected utility is increasing for F; < D, decreasing for F; > D, and thus F;(D;)
D, is the unique best response. Truth-telling is a Bayesian Nash equilibrium.

The constrained equal loss rule performs better than the proportional rule, since truth-
telling is an equilibrium without a lower bound on the private demands of the users.
Next, we consider situations with three users. We consider the expected utility of user 1
and assume that the users 2 and 3 tell the truth, F;(D;) = D;, for i = 2, 3. To determine
the value of the loss /3 that is equally divided, we consider several cases.

First, suppose that all users obtain a positive part of the capacity, A; > 0 for all . Then
F1 —ﬁ+D2—B+D3—ﬁ:C’,0r6: (F1+D2+D3—C')/3Thus

A =F—-p3= %(2F1+C—D2—D3). (6.31)
This amount is positive, A; > 0, if and only if:

Dy + D3 < C' + 2F. (6.32)
Similarly, A, > 0 if and only if:

—2Dy + D3y < C — Fy, (6.33)
and As > 0 if and only if

Dy —2D3 < C — Fy. (6.34)
Notice that at least two users should get a positive amount. If not, then one user gets all
capacity, which can only happen if his request exceeds the other requests by more than
the capacity C. This cannot occur since 0 < F; < C for all users. Table 6.2 shows the

diverse values of A; for the different cases that can occur. For reference, we numbered
the cases from I to IV.

Theorem 6.4.3 Consider the constrained equal loss rule and N = 3 users. Then truth-telling
is a Bayesian Nash equilibrium.
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Table 6.2: Values of A; for Case I-IV

Case True inequalities Ay

I (6.32),(6.33),(6.34) (2F1 — Dy — D3+ (C)/3
1I (6.33), (6.34) 0

III (6.32), (6.34) (C+ Fy, — D3)/2

v (6.32), (6.33) (C+ Fy—Dy)/2

Proof The expected utility for user 1 is:
E[Vi(F;Dy)] = [y [ (max{F) — 8,0} — max{F, — Dy,0}) z&dDydD;
= & [ [ max{F — 8,0}dDsd Dy — max{F, — Dy,0}. (6.35)

We focus on the calculation of the first term for several values of F;. First, if F; = 0 then
the outcome of the double integral is also 0. Next, consider 0 < F; < (/2. Taking into
account the four cases in the table above, we obtain:

1 ¢ pC
E / / max{Fl - 5, O}dDQdDg
0 0

= / / (2Fy — Dy — D3 + C)/3dDyd D5 + / / 0dDod Dy
I 11

+ //(C + Fy — D3)/2dDyd D3 + //(C + Fy — D3)/2dD2d D3
1V
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1 F3 F3
= % (203 + 12C%*F) + 24CF? — 29F%) 4+ 0 + 6_61’2 + 6—52
1
= oo (2C3 + 12C*F, + 24CF? — 17F}). (6.36)

Similarly, for C'/2 < F; < C' we obtain:

(24C*Fy — F}). (6.37)

1 C C
E/O /0 max{F1 — B, O}dDQdDg = 3602

For 0 < F < /2, the derivative of this expected utility with respect to F; is:

3607 (12C% + 48C'Fy — 51F}) — Ly =py3- (6.38)

The first term is between 0 and 1 due to F; € [0, C]. For C'/2 < F; < C, the derivative of
the expected utility with respect to £ is:

1
12C?

(8C? — FT) — 1p>py)- (6.39)
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Also here, the first term lies between 0 and 1. So, F; = D; is the unique maximum. In
both cases, the expected utility is increasing for F; < D; and decreasing otherwise.
Hence, /1 = D; maximizes the expected utility. We conclude that truth-telling is a
Bayesian Nash equilibrium. |

Once again, the constrained equal loss rule has truth-telling as an equilibrium. This
result is better than the proportional rule, since now we have no lower bound on the
private demand of the users. If there are more than three users, the complexity of the
analysis grows rapidly. For N users we have to consider 2V — N — 1 special cases. Again,
we use simulation to study these cases. In the simulation study for I = 4-10, 12, 15, 20,
30, 50 and 100 departments, truth-telling is an optimal strategy.

Different Cost and Reward Parameters

In this paragraph we analyze general utility functions with = # y. We are interested for
which values of x and y truth-telling remains a Bayesian Nash equilibrium. Given the
complexity of the analysis we restrict ourselves to the case with N = 2 users.

Theorem 6.4.4 Consider the constrained equal loss rule, N = 2 users and weights x # vy in
the utility function. Truth-telling is a Bayesian Nash equilibrium if £ > 1 — 5 min{ Dy, D5}

Proof From the proof of the previous theorem, the expected utility of user 1 is:

2

E[Vi(F; Dy)] = (F - f—c) _ y(Fi - D) (6.40)

The derivative with respect to Fj is:

F

Hence, the expected utility is increasing for F; < D;. User 1 has maximal expected
utility in F} = D, if the expected utility is decreasing for F; > D;. This occurs if z(1 —
D,/(2C)) —y <0,o0ry/x > 1— D;/(2C). The result follows since this inequality should
hold for all users. |

6.5 Numerical Example

We illustrate the model with a numerical example, which is based on the experience of
one of the authors while working as a hospital consultant. We return to the MRI scanner



118 CHAPTER 6. ALLOCATING MRI SCAN CAPACITY

example from the Introduction section, and consider four departments that each make
requests for a specific scanning type, namely oncological (O), cardiovascular (C), neuro-
logical (N), and musculoskeletal (M). Capacity is distributed proportionally according
to the requests, and the cost and reward parameters are both equal to 1, as in section
6.3.1. The MRI scan facility has a fixed capacity C' of 1000 scans per month. In this ex-
ample we chose to use the proportional allocation mechanism. Since we consider more
than three departments, there is no lower bound on the demand of the users. Also, the
proportional allocation rule is intuitive and easy to apply.

We start in month 1, and obtain the estimates of future demand (F;). Recall that ca-
pacity is allocated by the Radiology department, having no knowledge on the actual
demand D,. The demand forecasts F; and allocated capacities A; are given in the first
two columns of Table 6.3. At the end of month 1, the actual demand D, is known. This
information can be used to penalize the departments, if necessary. The other columns
of Table 6.3 give the actual demand D;, the deviation of the allocated amount A; and
forecast F; from D;, and the value of the utility function V;.

Table 6.3: Month 1: forecast of demand Fj, allocated capacity A;, actual demand D;, deviation of
D; from F; and A;, and utility V;

Department Fl Al Dl E — Dl % E — Dz Az — Dz V;
O 137 126 127 10 8% -1 116
C 130 119 85 45 53% 34 74
N 630 578 623 7 1% -45 571
M 193 177 238 -45 -19% -61 177
All 1090 1000 1073 17 2% -73 938

We see that in month 1 the waiting list increases with 107 MRI scans (scanning types
oncological, neurological, and musculoskeletal), while there is unused capacity of 34
MRI scans (scanning type cardiovascular). Note that there is no penalty on the surplus
demand related to the allocated capacity (i.e. D — A), since we only focus on the truth-
telling element in the problem. In the example, it is implicitly assumed that surplus
demand is lost. This lost demand could represent MRI scans that are performed at an-
other institution, or not performed at all, because the physician decides upon another
method of diagnostics.

We assume that the departments learn from the penalty given at the end of month 1
and therefore in month 2 provide an honest estimate (i.e. F; = D; for all 7). Without loss
of generality, we assume that the actual demands of the departments in month 2 equal
that of month 1. Capacity is again allocated proportionally to the requests. See Table 6.4
for results.

In month 2 the waiting list increases with 73 MRI scans, which equals the capacity short-
age of >, D; — C, but there is no unused capacity. Figure 6.4 compares the difference
between the allocated capacity A; and actual demand D; for both months. Furthermore,
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Table 6.4: Month 2: forecast of demand Fj, allocated capacity A;, actual demand D;, deviation of
D, from F; and A;, and utility V;

Department Fl Az Dz f‘ﬁZ — Dz % f‘ﬁZ — Dz Al — Dl ‘/Z
O 127 118 127 0 0% 9 118
C 85 79 85 0 0% -6 79
N 623 581 623 0 0% -42 581
M 238 222 238 0 0% -16 222
All 1073 1000 1073 0 0% -73 1000

we see an increase in utility for all departments compared to month 1, while capacity is
distributed more fairly.

Figure 6.4: Difference between allocated capacity A; and actual demand D; for both months.
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6.6 Discussion

In this chapter we have studied a Radiology department (the resource) that has to dis-
tribute MRI scanning capacity among competing hospital departments (the users). Ra-
diology uses forecasts of demand, provided by the hospital departments, to distribute
the scanning capacity. The actual value of their demand is only known to the hospital
departments. When the departments over- or underestimate the demand it can occur
that the actual demand is less than the allocated capacity (i.e. the scanner sits idle) or
the actual demand is larger than the allocated capacity. Both situations can arise simul-
taneously. In order to have a fair allocation, where all available capacity is actually used,
Radiology should motivate the departments to provide an honest forecast of their de-
mand.

We have introduced a generic approach to study the allocation of capacity to the users.
Using a Bayesian game framework we show that under several capacity allocation
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mechanisms it is an optimal strategy for each user to provide an honest demand fore-
cast (the truth-telling equilibrium), and as a result the resource can fairly distribute the
available capacity. When the number of users is small, certain restrictions on the relative
size of the demands apply for the proportional allocation mechanism.

The penalty cost y on the surplus capacity requested by the departments will not be cus-
tomary in most hospitals. However, hospitals are transforming to more professionally
organized institutions. Incorporated in this transform is the usage of internal costing
models in which departments reimburse each other for their services. The reimburse-
ment also provides an incentive to make a more efficient use of available resources.
Introducing a penalty cost will consequently become less involved than in the former
traditional hospital organization.

Topics for further research would for instance be the reward users place on allocated
capacity. Even though the three capacity allocation mechanisms are intuitively appeal-
ing, and satisfy the desired properties of an allocation mechanism as stated in section
6.2.2, other allocation mechanisms also might be of interest and may be better related to
reality for some practical cases. Also, using a combinatorial auction to model the prob-
lem, as mentioned in the introduction section, could be a valuable extension. From an
organizational point of view it would be appropriate to investigate the requirements for
a successful implementation of the methodology.

We have shown that even with minor restrictions on the behavior of users, it is possible
to attain a truth-telling equilibrium, where the shared resource is fairly allocated and all
capacity is used.
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Challenges Associated with Urgent
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Chapter 7

Planning & Scheduling of Semi-Urgent
Surgeries

7.1 Introduction

We consider a surgical department where elective, urgent and semi-urgent (synonym:
semi-elective) patients are treated. An example of a department with such characteris-
tics is a neurosurgery department. Urgent treatment is, among others, required for rup-
tured aneurysms, epidural or subdural hematomas, cauda equina syndrome, and (insta-
ble) spine fractures compromising the myelum or cauda equina. Semi-urgent patholo-
gies include, among others, intracranial oncology, spine fractures with no or minimal
neurological symptoms, drain dysfunctionalities, and disc herniations with unbearable
pain or severe neurological deficits. Apart from these pathologies, the majority of neuro-
surgery patients do not require surgery within one or two weeks, and these are regarded
as elective.

There is a definite trade-off between two major intertwined issues with respect to avail-
able surgical capacity: allocation of capacity to surgical departments and optimization
of the surgical schedule within departments. On the one hand, when the target is mini-
mal use of surgical resources, a more efficient surgical schedule may reduce the slack in
the schedule, and therefore reduce the required capacity while keeping the societal costs
due to patient cancellation and waiting constant. On the other hand, when the target is
minimal societal costs due to patient cancellation and waiting, a more efficient surgi-
cal schedule may reduce these while keeping the allocated surgical resources constant.
The trade-off is thus between societal costs and required surgical capacity. Allocating
capacity to a surgical department usually is subject to additional constraints such as the
restriction in the total available time, the time allocated to other departments, labor reg-
ulations (e.g., opening hours of the operating rooms), staff restrictions (e.g., available
number of surgeons), and the possibility to handle exceptions (e.g., in over-time).

In this chapter we take the capacity allocated to a surgical department as a starting

123
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point. We aim for robust patient scheduling schemes. We focus on the setting of a neuro-
surgery department treating urgent, semi-urgent and elective patients. Urgent patients
are usually treated in a separate OR, but semi-urgent patients need to be fitted into the
regular OR schedule. When a semi-urgent patient arrives, an elective patient is canceled
to accommodate this (prioritized) patient. The cancellation of a surgery negatively af-
fects the patient [171]. Medical professionals tend to feel sorry for the canceled patient
and aim to reschedule the surgery as soon as possible. Thus, a canceled elective patient
receives a semi-urgent status, and rescheduling this surgery possibly causes the can-
cellation of another elective patient. This knock-on effect results in a clear dependency
between semi-urgent patient arrivals and cancellation of elective patients in subsequent
weeks.

Several strategies are known from literature to cope with non-elective patients. One
strategy is to reserve a small amount of time for emergency patients for whom surgery
is required on the day of arrival in each elective patient OR [205], instead of dedicating
one or several ORs to emergent cases [18]. Another possibility is to determine the elec-
tive patient schedule given the mean number of emergencies [72]. In all papers reviewed
in [38], acute cases have to be performed at least on the day of arrival, as opposed to the
semi-urgent surgeries that are studied in this chapter. In both [18] and [154] the authors
distinguish between emergency surgeries (which have to be performed now) and ur-
gent surgeries (which have to be performed within a day). In [72] and [118] stochastic
programming is applied to support the scheduling of add-on cases, but in both papers
these cases have to be completed on the day of arrival.

In [25] the authors start from a different viewpoint and determine, using a simulation
model, how many elective cases can be performed in a dedicated orthopedic trauma OR.
They state that when elective patients are willing to accept that their surgery might be
canceled because of an incoming trauma patient, a higher throughput can be achieved.
In [56] a trade-off is made between overtime and unused OR time. The paper has an
operational viewpoint, by scheduling patients on an individual level. This is similar to
the methodology presented in [98], where mathematical algorithms are used to schedule
individual cases in available OR blocks.

The problem setting described here shows a similarity with the news vendor prob-
lem, where at the start of each decision period for that period the available capacity
is matched with the required resources, and unmatched requests are discarded at the
end of the period (see e.g. [56, 176, 134, 148] for news vendor problems applied to OR
problems). The news vendor problem problem does not incorporate scheduling of dis-
carded requests in subsequent periods, which is precisely the problem when elective
surgeries are canceled and re-scheduled in subsequent periods. Modeling this knock-on
effect is the natural domain of queuing theory. In this chapter, we therefore invoke the
powerful theory of queues to analyze the cancellation rate of elective patients given a
pre-specified surgical capacity, and the influence of canceling patients on the cancella-
tion rate in the future.
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For a surgical department with given capacity handling elective, urgent and semi-urgent
patients, this chapter investigates reservation schemes of OR time for semi-urgent surg-
eries. As the arrival pattern of semi-urgent patients is unpredictable, the reserved OR
may remain unused since elective patients cannot be scheduled so shortly before their
surgery. We study the trade-off between cancellations of elective surgeries due to semi-
urgent surgeries, and unused OR time due to excessive reservation of OR time for semi-
urgent surgeries.

In the next section we first evaluate, using a queuing theory framework, the long run
OR capacity needed to accommodate every incoming semi-urgent surgery. Second, we
introduce another queuing model that enables a trade-off between the cancellation rate
of elective surgeries and unused OR time. In Section 7.3 we develop a decision support
tool, based on Markov decision theory, that assists the scheduling process of elective
and semi-urgent surgeries. We demonstrate our results in Section 7.4 with actual data
obtained from a department of neurosurgery, followed by the discussion and conclusion
in Section 7.5.

7.2 Model and Long Term Behavior

The goal of the strategic model presented in this section is to provide an estimate for
the amount of OR time that should be reserved for all semi-urgent surgeries in the
long run. Therefore, we do not distinguish between the one- and two-week streams
or take overtime into account. These components of the problem are discussed in the
tactical model presented in Section 7.3. Obviously, dynamically adjusting the amount of
reserved OR time according to the inflow of semi-urgent surgeries would result in lit-
tle unused OR time. However, given hospital policy that dictates that elective patients
should be planned weeks in advance, such an adaptive policy would impose canceling
the elective patients that were planned in the claimed slots. In order to make the trade-
off between cancellation of surgeries and unused OR capacity, a constant amount of OR
time is reserved for semi-urgent surgeries. A summary of the notation used is listed in
Table 7.1.

7.2.1 Assumptions and Model Parameters

The time available per OR day is divided into K slots of equal length. Surgeries can have
a duration of 1,2, .., K slots (K < o00), and are categorized according to this duration.
When a surgery has an mean duration of more than K slots, it is also included into
the category of surgeries with length K slots. The total number of OR slots assigned
to the department per week (m) equals the number of OR days per week multiplied
by K. In order to accommodate semi-urgent patients, every week a fixed number of
slots (s) is reserved (0 < s < m). Given the impact of the surgery on the patient and the
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undesirability of performing semi-urgent surgeries in overtime, we assume, in line with
medical practice (see the Introduction), that canceled elective patients become semi-
urgent patients the following week. These patients need to undergo surgery within one
week of their canceled surgery.

Progression of the Number of Semi-Urgent Slots

We focus on the number of semi-urgent slots waiting at the start of week n (,,). This
equals the amount of semi-urgent slots that arrived during the previous week (R,_1)
plus the elective slots that were canceled during the previous week in order to accom-
modate surplus semi-urgent slots. Elective slots are canceled if the reserved capacity
for semi-urgent slots is insufficient. Recall that, in accordance with medical practice, the
canceled elective slots from week n become semi-urgent slots in week n + 1. Therefore,
for our analysis of W, elective slots are not canceled, but instead the surplus semi-
urgent slots from week n are transfered to week n + 1. An example of the progression in
the number of semi-urgent slots waiting at the start of week n is given in Figure 7.1.

Table 7.1: Notation introduced in Section 7.2

Symbol Description

Number of slots available per OR day

Total number of slots assigned to department

Number of slots reserved for semi-urgent surgeries

Number of semi-urgent slots waiting for surgery at the start of week n
Number of semi-urgent slots waiting for surgery

at the start of a week in a stationary regime

q Equilibrium distribution of W

Pw(z)  Generating function of W

A Arrival rate of semi-urgent surgeries

Dk P(Surgery is of length k slots), k = 1,2, .. K

R, Number of semi-urgent slots that arrive during week n

Pr(z) Generating function of the number of arrivals per week
Ne
Ne
Ce

%g“SN

Number of unused reserved semi-urgent slots per week
Number of canceled elective slots per week
Cost of one unused reserved semi-urgent slot

Ce Cost of one canceled elective slot

Cy Total Costs

The Arrival Process

The number of arriving semi-urgent slots per week is equal to the sum of the number of
slots per arriving patient. Patients arrive independently according to a Poisson process,
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furthermore the number of slots per arriving patient is random. Therefore we can model
the arrival process with the compound Poisson process [187]. The arrival rate of semi-
urgent patients is . Let p, denote the probability that an arriving semi-urgent surgery
is of size k slots, k = 1, .., K. The generating function of the arrival process is [187]:

9] K
Pr(z) = Z]P’(R =) =e 1 where Zpk =1, and |[z| <1
7=0 k=1

(7.1)

Figure 7.1: An example of the progression of the number of semi-urgent slots waiting at the start
of the week (s = 3)
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7.2.2 Stability of the System

From the description in subsection 7.2.1 (see also Figure 7.1) it is clear that the number
of semi-urgent slots waiting at the start of week n + 1 equals the number of semi-urgent
slots that arrived during week n plus the number of surplus semi-urgent slots of week
n:

Wpi1t = R, +{W,—-s}", n=12.. and
W1 == Ro, (72)
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where {z}" = 0 if < 0 and z otherwise. This is the Lindley equation for the sojourn
time in a GI/G/1 queue [203]. The limit for n — oo on W,,;; converges in distribution to
W if E[R] < s, and therefore we can conclude that as long as the mean weekly amount
of semi-urgent slot arrivals, E[R], is strictly smaller than the number of slots allocated
to semi-urgent surgeries, s, the system is stable and the capacity reserved for these slots
should be sufficient on average. It follows that there is a minimum amount of capacity
(Smin) that should be reserved for semi-urgent surgeries: s,,;, = [E[R]]|, where [z] equals
x rounded up to the nearest integer.

7.2.3 The Number of Semi-Urgent Slots Waiting

At the start of every week the state of the system is inspected. We represent the system
by a slotted queuing model in discrete time [32]. We can distinguish between two situa-
tions: (1) more semi-urgent slots are waiting than can be completed in one week (epochs
2-6 and 9 in Figure 7.1), and (2) less (epoch 7 in Figure 7.1) or an equal amount of semi-
urgent slots are waiting (epoch 8 in Figure 7.1) than can be completed. We obtain the
following expressions for the transition probabilities:

P(R, = wpi1 —w, +5s) if w,—s>0

P(R, = w,;1) otherwise. (7.3)

]P)(Wn—‘rl - wn+1|Wn = wn) - {

Define P as the matrix with transition probabilities. Let ¢ = (¢0 ¢1 - --) denote the
equilibrium distribution of W, the number of semi-urgent slots waiting at the start of a
week, where ¢; = P(W = i). The ¢;’s can be computed as q = qP. An expression for the
generating function of the equilibrium probabilities ¢; is [32]:

Pr(2) Sf qi(2° — 2%
Pulz) = — P <l (7.4)

with Pg(z) as given in (7.1). To obtain an exact expression for Py (z) we have to deter-
mine the s unknows ¢, g1, ..., gs—1. By Rouché’s Theorem [110] it can be shown that the
denominator of Py (2) has s — 1 zeros inside the unit disk [2]. Since Py (z) is a gener-
ating function and therefore bounded for all |z| < 1, the zeros of the denominator are
zeros of the numerator as well [32]. Thus we obtain s — 1 equations for the s unknowns
9,1, ---, ¢s—1. To derive the last equation, we use that Py (1) = 1. In order to find the
s — 1 zeros of the denominator of Py (z), we start by solving;:

A A= 3 )
2° — Pr(z) = 0, whichisequivalentto 2°=e k=1 . (7.5)
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We replace this equation by s — 1 equations, where each z; is a solution of the above
equation [31]:

A & k
—g(l— > prz®)
k=1

zj = F(zj)e%i%, with F(z)=e , and 7=+v-L. (7.6)

For each value of j (j = 1,2, ..., s — 1), we numerically solve this equation by using fixed
point iteration [12]:

A0 = 0. (7.7)

J

The z;’s that are found with this procedure are also zeros of the numerator of Py (z). We
thus obtain s — 1 equations for the unknowns g, .., ¢s—1 that with the added equation
Py (1) = 1 define Py (2), || < 1.

7.2.4 Performance Measures

We are particularly interested in the mean number of canceled elective slots per work
week (E[N]), and the mean number of empty reserved semi-urgent slots per work week
(E[N¢]). For the latter it follows from (7.4) and Py (1) = Pg(1) = 1 that:

s—1

E[N,] = Z(S—i)Qi

= s—E[R]. (7.8)

The mean number of elective slots that are canceled per week equals:

o0

E[N] = Z(i—s)%‘

=5

= Y igi—s+ Y (s—i)g
=0 =0
= P, (1) — E[R]. (7.9)

Since

s—1
> qi(s* —i® —s+1i) = s* + s+ Pp(1)

P, (1) = E[R + =" 2 B[R] , (7.10)
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where
K
P(1) = XY k(k— L)p +E*[R], (7.11)
k=1
we see that:
s—1 "
> qi(s® —i* —s+1i) = s* + s+ Py(l)
E[N,)] = = . (7.12)

2(s — E[R))

7.2.5 Cost Structure

Let C. and C. be the costs of one empty semi-urgent slot and one canceled elective slot.
The expected total costs then equal:

E[Ct] = E[Ne]ce+E[Nc]Cc- (713)

The optimal number of slots to reserve for semi-urgent surgeries (s*) depends on the
choice of C. and C,, and is the value of s that minimizes E[C}].

7.3 Optimal Allocation of Surgery Slots

Given the stochasticity of the arrival process of semi-urgent patients, there will be weeks
when the allocated capacity s* is not sufficient. In this case the department can choose
to perform the surplus semi-urgent patients this week, and cancel elective patients. On
the other hand, the department can choose to postpone the semi-urgent surgeries until
next week. A major drawback of this operational mode is that new semi-urgent patients
arrive, who together with the postponed patients from this week, pose a huge demand
on available resources. Furthermore, as mentioned in the Introduction, if the number of
semi-urgent slots waiting for treatment exceeds the weekly amount of OR slots avail-
able, semi-urgent surgeries have to be performed in overtime, which is very undesirable
as well. In this section we describe a Markov decision model that provides a scheduling
strategy for surplus semi-urgent slots, given the parameters obtained with the queuing
model. A summary of the additional notation introduced in this section is given in Table
7.2.
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7.3.1 Assumptions

In this model we employ a more detailed view of the process, and consider the in-
tlow of the two types of semi-urgent surgeries separately: the first type of semi-urgent
surgeries need to be performed within one week, the second type of semi-urgent surg-
eries need to be performed within two weeks. Given the system status at the begin-
ning of week n, we decide how many one- and two-week semi-urgent slots should be
performed this week. Since one-week semi-urgent surgeries have to be performed this
week, all incoming surgeries of this type are scheduled for this week. First the reserved
slots (1,2, .., s*) are used, and if additional one-week semi-urgent demand remains, elec-
tive slots are canceled. One-week semi-urgent demand that is still unaccommodated is
performed in overtime. There are several options for scheduling two-week patients. A
logical choice would be to first schedule all one-week slots, then schedule two-week
slots in the reserved slots of this week that are still available. Subsequently, it has to
be decided whether to perform the remaining two-week slots either this or next week.
If the remaining two-week slots are scheduled for next week, no elective slots have to
be canceled this week. On the other hand, postponed two-week semi-urgent slots have
evolved into one-week semi-urgent slots the next week. The existence of these slots,
together with newly arrived one-week semi-urgent slots, can result in a vast amount
of semi-urgent demand that possibly has to be treated in overtime. In this section, a
Markov decision model is presented that enables a trade-off between these two factors.
For an overview of Markov decision theory, see [158]. In the model, we make the fol-
lowing assumptions:

* All one-week semi-urgent slots are planned this week.

* Two week semi-urgent slots not planned this week become one-week semi-urgent
slots next week.

e Elective slots canceled this week become two-week
semi-urgent slots next week.

7.3.2 The Markov Decision Model

We use a Markov decision model with infinite planning horizon to support the depart-
ment in deciding how many two-week slots should be planned in a certain week (action
a,). The system state at the start of week n, (n =0, 1, ..., 00), is given by w,,= (wl,,, w2,),
where wl,, and w2, are the number of one- and two-week semi-urgent slots waiting at
that moment. The action chosen depends on the number of two-week slots waiting and
on the part of capacity that is already allocated to one-week slots. Summarizing, the
range for action a,, is determined by (0, 1, .., min(w2,,, (m — wl,)™)).
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Table 7.2: Additional notation introduced in Section 7.3

Symbol Description

w1, Number of one-week semi-urgent slots
waiting for surgery at the start of week n

w2, Number of two-week semi-urgent slots

waiting for surgery at the start of week n
wy, = (wly, w2,) System state at start of week n

an Action chosen in week n

R1, Number of one-week semi-urgent slot arrivals during week n

R2, Number of two-week semi-urgent slot arrivals during week n

A Arrival rate of one-week semi-urgent surgeries

A2 Arrival rate of two-week semi-urgent surgeries

D1k P(one-week semi-urgent surgery is of length k slots), k = 1,2, .., K
D2k P(two-week semi-urgent surgery is of length k slots), k = 1,2, .., K
Nen Number of unused reserved semi-urgent slots during week n

Nen Number of canceled elective slots during week n

Non Number of slots performed in overtime during week n

Co Cost of performing one slot in overtime

Cin Total costs incurred in week n

a Discount factor

o* Optimal policy

On Monotone policy

Transition Probabilities

Let the random variables R1,, and R2, denote the number of one- and two-week semi-
urgent slot arrivals during week n, where R1, + R2, = R,. Similarly to the queuing
model presented in Section 7.2, R1 and R2 follow a compound Poisson distribution,
with arrival rates A\; and \;, and py; and py;, the probability that a one- and two-week
surgery is of length k slots.

Recall that m slots are available each week for both elective and semi-urgent surgeries.
Therefore, when the number of one-week semi-urgent slots waiting exceeds m, or when
the sum of one- and two-week semi-urgent slots waiting exceeds 2m, the surplus semi-
urgent slots are performed in overtime. Figure 7.2 shows how the number of slots per-
formed in overtime is calculated. In our model, we take into account the overtime by
including (high) costs for each overtime surgery slot. However, the slots performed in
overtime do not affect the system state, as they have left the system in the subsequent
week. Thus, the state space A of the system is described as follows:

A={w=(wlw2):wl,w2=0,1,...;wl <m;wl +w2 < 2m}. (7.14)

The state space is depicted in Figure 7.3. The areas B,C and D and the arrows corre-
spond to the three different cases of handling the overtime slots (see also Figure 7.2).
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Figure 7.2: Number of semi-urgent slots performed in overtime: three different cases
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For notational purposes, let

P(wy|wp_1,a) =  P(W1, =wl,, W2, =w2,|[W1l,_y =wl,_;

W2n—1 = w2n—1; ap—1 = CL).

(7.15)

Now we define these transition probabilities for each w,, € A.

If wl, < mand wl, + w2, < 2m then no slots are performed in overtime in week n and
thus we have:

P(wy|wp-1,a) =  P(Rl,-1 =wl, —w2,_1 +a)
xP(R2, 1 = w2, — (wl,_1 —s+a)"),
wl, < m,wl, + w2, < 2m, (7.16)
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Figure 7.3: State space of the system
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and (wl,_; — s + a)* is the number of canceled elective slots.

Now, assume that at the start of week n we have w1l one-week semi-urgent slots and
w2 two-week semi-urgent slots waiting. If w = (wl,w2) € B then some slots have to
be performed in overtime as explained above. Thus, according to the overtime policy
depicted in Figure 7.2, the next state is given by wl,, = wl, w2, = 2m — wl,, a point on
the boundary between A and B, as pointed out with arrows in Figure 7.3. Including this
into transition probabilities, we derive:

P(wp|w,—1,a) =  P(Rl,_1 =wl, — w2, 1+ a)
xP(R2,_1 > w2, — (wl,_; — s +a)"),
wl, <m,wl, + w2, =2m. (7.17)

Analogously, if at the start of week n the number of waiting semi-urgent slots is de-
scribed by w € C, then the next state is w,, = (m, m), and thus the transition probabilities
for this state are given by:

P(wy|wp-1,a) =  P(Rl,-1 > wl, —w2,_; +a)
xP(R2, 1 > w2, — (wl,_; —s+a)"),
wy, = (m,m). (7.18)
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Finally, w € D will result in the state with w1,, = m, and we obtain:

P(wy|w,_1,a) =  P(Rl,_1 > wl, — w2, 1+ a)
xP(R2, 1 = w2, — (wl,_1 —s+a)"),
wl, =m,w2, < m. (7.19)

Note that P(R1, < z) =P(R2, <z)=0ifx <0.

Performance Measures

The performance measures that were introduced for the queuing model are calculated
on a weekly basis. Given the state w,, = (wl,,w2,) and action a, the number of unused
reserved semi-urgent slots and the number of canceled electives can be established as
follows:

N, = (s—wl,—a)", and
N, = (wl,—s+a)". (7.20)

Besides, we introduce a new performance measure, E[N,| the mean number of semi-
urgent slots that have to be performed in overtime next week as a consequence of the
chosen action of this week. In week n, this amount depends on the number of slots at the
start of week n, as described in Figure 7.2. Computing E[N, ,11|w,, a] works as follows:

E[Nopi1|wn, a] = > (wl+w2—2m)

wl<m
wl4+w2>2m

xP(R1, = wl — w2, + a)P(R2, = w2 — (wl, —s+a)")
+ Z (wl +w2 —2m) x P(R1,, = wl — w2, + a)

wl>m
wl4+w2>2m

xP(R2, = w2 — (wl, — s +a)")

+ Z(wl—m)

wl>m
w2<m

xP(R1, = wl — w2, + a)P(R2, 1 = w2 — (wl, —s+a)").
(7.21)

Cost Structure

The costs incurred for unused semi-urgent slots (C.) and canceled elective slots (C.) are
equivalent with those introduced in Section 7.2. An extra cost, C,, for performing one-
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and two-week slots in overtime is introduced. The expected total costs incurred in week
n equal:

ElCin] = E[Nen]Ce+E[Nen]Ce + E[Nopnia]Co. (7.22)

7.3.3 Determining the Optimal Policy

In the process of coming to an optimal policy ¢* that defines an optimal action for each
state w,,, we want to take into account the costs incurred today and in the future. How-
ever, we consider the costs experienced today as being more important than those ex-
perienced in the future. Therefore we use discount factor «, « € (0, 1), in order to recal-
culate future costs to the cost level of today. Define Vj(w,) as the expected discounted
costs over an infinite horizon, given initial state wy:

VZ;(U)()) = Es Zanct,n (Wn7an)|w0 . (723)
n=0

Let V(wy) denote the minimal value of Vj(wy):

V(wg) = m(sin Vs(wy). (7.24)
For each initial state wy and every action a, in an optimal policy it should hold that:

V(wg) < Cio (wo,a0) + > P(wifwo, a)V (wy). (7.25)

w1

This gives us the optimality equation:

V(wp) = 12161(151 {Cto (wo, ag) + o Z P(wi|wo, @)V (w1)}. (7.26)

w1

The optimal policy ¢* consists of the values of a that solve the optimality equation for
each state. In order to find an optimal policy ¢*, we use the policy iteration algorithm
[167]. Since the state and action space are finite, the policy iteration algorithm converges
in a finite number of steps. Note that it is never optimal to perform two-week slots in
overtime, since even if they are postponed and then cannot be treated in regular time,
they can be treated in overtime next week as well.
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7.4 Planning & Scheduling at a Neurosurgery Department

In this section we illustrate our modeling and optimization approach by considering a
neurosurgery department situated in an academic hospital in the Netherlands. Depart-
ment staff feared that dedicating scarce OR time to the uncertain stream of semi-urgent
patients would lead to an excessive amount of unused OR capacity, and therefore de-
cided to plan almost only elective patients in the available OR time. As a consequence, in
daily operation, a large portion of elective surgeries was canceled in order to accommo-
date semi-urgent surgeries. Furthermore, many ad hoc decisions were needed to ensure
that all patients would receive the care they needed. Supported by our models, we show
possibilities for improvement.

All surgeries performed by the department can be characterized by the estimated OR
time as follows: a) one third of an OR day, b) two thirds of an OR day, c) one OR day,
and d) more than one OR day. With this in mind the OR day is divided into three slots of
equal length (K = 3). Type 1 surgeries have an estimated duration of one slot, type 2 of
two slots, and type 3 surgeries an estimated duration of three or more slots. Therefore,
it is either possible to perform in one OR day i) three type 1 surgeries, ii) one type 1
and one type 2 surgery, or iii) one type 3 surgery. The department is assigned 8 OR days
each week. With each day consisting of 3 slots, the department has 24 slots per week at
its disposal (i.e. m = 24).

74.1 Data

The data needed for the model, semi-urgent patient arrivals, their mean surgery du-
ration and semi-urgent state (i.e. surgery within one or two weeks) were recorded for
a consecutive period of ten weeks. The characteristics of the arrival process are in line
with the compound Poisson arrival process as outlined in [187]. Furthermore, the vari-
ance to mean ratio (vmr), defined as %, which equals 1 for the Poisson distribution,
shows that modeling the patient arrival process at this department with a Poisson pro-
cess gives a conservative estimate for the aggregated semi-urgent patient stream (vmr
= 0.25, so the variance is lower than would be expected from the Poisson distribution),
while it provides a good estimate for the one-week semi-urgent patient flows (vmr =
1.03) and a slight conservative estimate for the two-week semi-urgent patient flow (vmr
= 0.76). Therefore we feel confident that the compound Poisson process is an appropri-
ate choice for modeling the arrival process of semi-urgent surgeries at this department.
Table 7.3 gives the parameter values derived from the data, used in the queuing model.
Since in the Markov decision model a distinction is made between one- and two-week
semi-urgent surgeries, different parameter values for the compound Poisson process
apply (Table 7.4). The cost parameters as defined in Section 7.2 and 7.3 should be
determined by the department, and depend on the emphasis the department wants to
put on either canceling patients or having an empty OR. For example, when C, = 10
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Table 7.3: Parameter values for queuing model (Section 7.2)

Parameter Value

v
4! %
b2 %
p3 %

Table 7.4: Parameter values for Markov decision model (Section 7.3)

Parameter Value

M 3L
Ao 2
P11 %)
P12 3%
P13 3%
P21 2%
Dp22 2%
Pb23 2%

and C. = 1, having an empty semi-urgent slot is considered ten times worse than can-
celing one elective slot. Since the department considers performing semi-urgent slots in
overtime as very undesirable, we emphasize on this by fixing C, on 100. We consider
three combinations for C. and C, (Table 7.5). For the department under consideration,
CC is a reasonable cost configuration. To demonstrate our methodology we also use
two other cost configurations.

Table 7.5: Cost combinations

Name C. C. C,
CCq 1 1 100
CCy 10 1 100
CCs 1 10 100

7.4.2 Determining the Required Number of Semi-Urgent Slots

We start by calculating the minimal amount of semi-urgent slots required (s,,;,), which
is equal to [E[R]] (see Section 7.2.2). Since

K
E[R] = XY kp, (7.27)
k=1
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we have that s,,;, = [9.6] = 10. The department estimated that approximately 40% of
surgeries performed during regular OR days is of the semi-urgent type, which is sup-
ported by the data (32 = 40%). Given that s may vary from s,,;, to m, we obtain the
results from Table 7.6. The optimal value of E[C}] for each cost combination is given
in bold. Note the vast amount of canceled elective slots for s = 10. This shows that fo-
cusing on the average behavior of a system can result in unsatisfactory (and maybe
unexpected) system outcomes. In Figure 7.4 E[N.] and E[V,| are compared graphically.

Table 7.6: Queuing model outcomes

s E[Ne E[N] E[C(CCy1)] E[C{(CCq)] E[C{(CC3)]

10 040 2381 24.21 27.81 238.54
11 140 542 6.82 19.42 55.64
12 240 250 4.90 26.50 27.36
13 340 1.37 4.77 35.37 17.14
14 440 082 5.22 44.82 12.58
15 540 051 5.91 54.51 10.47
16 640 0.32 6.72 64.32 9.61

17 740 021 7.61 74.21 9.45

18 840 0.13 8.53 84.13 9.72

19 940 0.08 9.48 94.08 10.25
20 1040 0.05 10.45 104.05 10.94
21 1140 0.03 11.43 114.03 11.74
22 1240 0.02 12.42 124.02 12.62
23 1340 0.01 13.41 134.01 13.54
24 1440 0.01 14.41 144.01 14.48

We see in Table 7.6 that for CC) the optimal value of s* equals 13 (45 days), for CC5, s*
equals 11 (32 days), and for CCs, s* equals 17 (52 days).

7.4.3 Allocation of Two-Week Semi-Urgent Slots

We now use the Markov decision model to schedule the one- and two-week semi-urgent
slots. Our goal is to find an optimal policy that prescribes the number of two-week semi-
urgent slots to plan, given any possible system state.

Monotone Policy

It is possible that in the optimal policy action a is not monotone increasing in w2,,. Al-
though this form of the optimal policy is not uncommon in literature [114], it may be
hard for medical professionals to implement. Therefore we proceed as follows. We de-
termine an optimal policy %, as described in Section 7.3.3. We then check whether a is
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Figure 7.4: E[N.] (interrupted line) and E[N.] for s = ([smin ], .., m)
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monotone increasing in w2,. If this is the case, we maintain this optimal policy. Other-
wise, we create a monotone policy, 6,7, based on the optimal policy, where the number of
two-week slots to plan (the chosen action) is not allowed to decrease. Such a monotone
policy is not necessarily optimal, even in the class of monotone policies.

Obtained Policies

The cost combinations C'C;, C'C,, and CCj are used to obtain three policies from the
Markov decision model. For cost combinations C'C; and C'C5; we find monotone increas-
ing optimal policies, given in Figures 7.5 and 7.7. For cost combination C'C; a monotone
policy was created, given in Figure 7.6. A discount factor of o = 0.95 is used in all cases.
We find that E[C;] = 4.01 for C'C}, E[C;] = 20.21 for C'C,, and E[C;] = 7.48 for CCs.
The horizontal axes in the figures show the possible values of w; and w,. When these
are combined the system state is obtained. On the vertical axis the action that is chosen
for each state is given. The set of actions for all possible states forms the policy J. Recall
that the action chosen consists only of the number of two-week semi-urgent slots to plan
this week, since one-week semi-urgent slots are completed this week. While ¢* for CC}
and CCj is straightforward - plan two-week slots up to s* and postpone the remaining
two-week slots until next week, the policy obtained for C'Cy is quite different. In several
states it occurs that even when the number of one-week slots exceeds s*, elective slots
are canceled in order to accommodate two-week slots. This action is chosen to avoid
overtime, a result of s* being close to s,,;,. Similar to the queuing model outcomes, this
shows that maintaining a cost structure similar to C'Cy, which results in choosing an s*
which is close to E[R], leads to the cancellation of elective slots.
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Figure 7.5: 6* for CC| (s* = 13)
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Figure 7.6: 6, for CCy (s* = 11)
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Figure 7.7: 0* for CCs5 (s* = 17))
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7.5 Discussion

In this chapter we have developed a methodology to handle the semi-urgent patient
flow at a surgical department. On a strategic level, we have determined the OR ca-
pacity needed to accommodate all semi-urgent patients on the long run, and we have
described a queuing model that allows for a trade-off between the number of elective
patients canceled and the amount of unused OR time. Given the amount of slots dedi-
cated to semi-urgent patients, the distribution of the number of elective slots canceled,
and the distribution of the number of unused semi-urgent slots can be derived with the
queuing model, as is shown in Section 7.4. An insight that follows from these results is
that focusing on only the average behavior of a system can result in undesired system
outcomes, in this case the cancellation of many elective patients. Since semi-urgent pa-
tient arrivals and elective cancellations are dependent, even over consecutive periods, a
natural modeling approach lies in the area of queuing theory.

On a tactical level, we have outlined a Markov decision model that supports the alloca-
tion of one- and two-week semi-urgent surgeries. This model provides a guideline for
the weekly scheduling of semi-urgent patients. The policies obtained with the model
can be transfered to a spreadsheet program and with little effort developed into a tool
that is easy to use. The added value of the Markov decision model is that it simplifies the
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scheduling task substantially. Note that all models can be used for arbitrary parameter
values.

In the methodology presented, both models involve the planning and scheduling of
individual slots. It is not taken into account that when a surgery takes more than one
slot, all slots must be scheduled adjacently in the same OR on the same day. To quantify
this effect, we calculated the mean number of semi-urgent slots treated for the example
in the case study where s* = 13. When considering all possible states, consisting of
the number of one-, two- and three-slot semi-urgent surgeries waiting, the mean equals
8.86 when taking into account the adjacency requirement (i.e. in the situation where we
have 4 full OR days of 3 slots and a single slot on another OR day). Note that in these
calculations we assumed that a rational planner would aim to maximize the number of
semi-urgent slots treated in the available time. Given that we consider an instance of
the problem where s* is relatively small, so there is little freedom to fill the OR days,
the deviation of 7.7% from the value of 9.60 slots (calculated with the queuing model)
will be smaller in most other (larger) instances of the problem. However, the adjacency
requirement results in a slightly higher demand for semi-urgent slots.

A topic for further research would be to extend the presented methodology with an
operational model that schedules individual surgeries. We consider the total OR time
allocated to a surgical department by OR management as given. Of course, it is possible
to establish the optimal amount of allocated OR time, and doing so first could result
in a better performance. One of our other aims is to carry out an extensive data analy-
sis to support an implementation of our methodology at the neurosurgery department
discussed in Section 7.4.
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Chapter 8

Implementation Study: Neurosurgery
Planning

8.1 Introduction

Planning difficulties at the Neurosurgery department of LUMC in the winter of 2007 /2008
initiated the study presented in Chapter 7. A large portion (=40%) of the patient flow at
this department was considered semi-urgent. Semi-urgent surgeries, to be performed
soon but not necessarily today, pose an uncertain demand on available hospital re-
sources, and interfere with the planning of elective surgeries. For a highly utilized OR,
reservation of OR time for semi-urgent surgeries avoids excessive cancellations of elec-
tive surgeries, but may also result in unused OR time, since arrivals of semi-urgent
patients are unpredictable. The queuing model we presented in Chapter 7 allowed for a
trade-off between cancellations of elective surgeries due to semi-urgent surgeries, and
unused OR time due to excessive reservation of OR time for semi-urgent surgeries. After
discussing the model outcomes of a case study that represented their situation (see Sec-
tion 7.4), the Neurosurgery department decided to implement the methodology, starting
with the allocation of OR slots to semi-urgent surgeries.

In this chapter we study how the department implemented the methodology. We mon-
itored the surgical planning process for a period of 25 weeks. We analyze the results in
terms of canceled elective surgeries and the occupation of the OR. Next to that we iden-
tify factors that still complicate the planning process, and present general observations
following from discussing the planning process with the department staff.

8.2 Methods

As follows from Section 7.4, at least 10 slots (3% days) of OR time should be allocated to
semi-urgent surgeries in order to avoid excessive growth of the waiting list. During the

145
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monitoring of the planning process, it turned out that the amount of OR time allocated
to semi-urgent surgeries varied per week and depended on the availability of OR time
(which was variable as well). We therefore took the available OR time and amount of
time allocated to semi-urgent surgeries as outcomes of this study.

The surgeries were planned as follows. During week n, the semi-urgent slots of week
n+1and n+2 were gradually filled with patients. Usually a temporary planning existed
that changed frequently. The planning of week n would be finalized in week n—1, so that
patients received notice about a week before. If an elective patient had to be canceled,
the patient received the semi-urgent status. In the remainder of this chapter, when we
refer to semi-urgent patients we do not include elective patients who received the semi-
urgent status after a cancellation.

8.2.1 Data Collection and Analysis

The planning process was monitored for a period of 25 weeks. For all elective and semi-
urgent surgeries performed during this period the following information was recorded:

* Name and hospital ID of the patient.

* Date of the surgery.

* Operating room the surgery was performed.

* Access time, which is in this case defined as time spent on the waiting list.
* Duration of the surgery.

* Elective or semi-urgent status of the patient.

* Number of times the surgery was canceled before admission.

* Number of times the surgery was canceled after admission.

* Any relevant additional information.

The available OR time was also recorded for each week. To determine the OR occupation
for the Neurosurgery department, data on urgent surgeries performed in these ORs
during regular OR hours was also collected.

The time between the first patient-doctor contact and the day of surgery was usually
longer than the access time, since patients entered the waiting list when all preparational
activities were completed.
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8.2.2 Additional Measures

Next to the allocation of OR slots to semi-urgent surgeries, the department implemented
additional measures to improve the planning process, namely:

¢ A part of OR time was divided in blocks and the blocks were dedicated to specific
surgery types (beginning of 2010).

* A semi-urgent surgery of a specific type had also to be carried out during these
blocks.

¢ A data manager was hired who did the OR planning, supervised by a neurosur-
geon (October 2010).

* The department started collaborations with several hospitals in the neighborhood,
to enable the exchange of patients, surgeries and surgeons between the hospitals
and thus increase flexibility (November 2010).

* An effort was made to shorten the waiting list and make a treatment plan for each
patient (mid 2011).

8.3 Results

We first present the results on the patient level, and then zoom in to the slot level. In
the 25-week period, 265 elective and semi-urgent surgeries were performed. If the same
patient had multiple surgeries on several occasions, these were counted separately. Of
the 265 patients, 98 were semi-urgent (36.98%), and 167 were elective (63.02%). The de-
partment had a total of 161 OR days at its disposal. Initially, there were 166 OR days
available, but due to public holidays (3 days) and a Neurosurgical conference (2 days),
5 days were canceled. Furthermore, the OR department also canceled one day but pro-
vided an extra day in another week as well. The available OR capacity fluctuated per
week. Per week on average 6.44 days (SD: 1.29) were available, instead of the initial
value of 8 days from the case study in Section 7.4. During week 9 — 17 the OR was partly
closed because of the summer holiday and so the available capacity was less: 6.11 days
(SD: 0.78, 95%Cl: 5.57;6.65). Outside the summer holiday the available capacity was 6.63
days (SD: 1.50, 95%Cl: 5.92;7.34).

8.3.1 Elective Patient Cancellations

A total of 31 (18.56%) elective patients included in the study were canceled one or sev-
eral times for surgery. An additional 3 patients were canceled during the monitoring
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period and subsequently the indication for the surgery was not present anymore. If pa-
tients were canceled, their surgery was on average rescheduled within 12.29 days (SD:
13.71). The high standard deviation shows that for many patients the time between the
cancellation and the day of surgery was longer than the average of two weeks. Specific
requirements on the availability of surgeons who needed to perform the surgery usually
made the rescheduling more complicated. Table 8.1 shows for the 31 patients how of-
ten and how they were canceled. A cancellation after admission usually resulted in the
patient being discharged and subsequently re-admitted a day prior to the new surgery
date.

Table 8.1: Cancellation mode and occurrence

Cancellation mode Number of patients Percentage
Before admission, single cancellation 9 29.03%
Before admission, multiple cancellations 2 6.45%
After admission, single cancellation 9 29.03%
Combinations

Before admission, single cancellation

& After admission, single cancellation 5 16.13%
Before admission, multiple cancellations

& After admission, single cancellation 1 3.23%
Unknown 5 16.13%

All cancellations were related to the planning of additional semi-urgent patients. The
OR department also keeps track of surgery cancellations; usually this is also presented
as a quality indicator for the hospital. However, in this registration system a cancellation
is only recorded when it is 24 hours or less before the intended day of surgery. In this
study we view cancellations from a patient perspective and incorporate the cancellation
of all surgeries the patient had received notion of, regardless of the time between the
cancellation and the intended surgery date.

8.3.2 Access Time

To provide a complete overview of the planning process we also present results on the
access time. For 12 patients (3 semi-urgent and 9 elective) the access time could not be
recorded. The mean access time was 8.56 days (SD: 9.91) for semi-urgent patients. In
the case of 8 semi-urgent patients, the access time was prolonged due to patient related
factors: for example, the condition of an elective patient deteriorated and consequently
the patient obtained a semi-urgent status. Some patients used medication that could
affect the outcome of surgery adversely and their surgery had to be postponed, or the
patient was too ill for surgery. If these patients are excluded, the mean access time for
semi-urgent patients decreases to 6.77 days (SD: 6.92 days).

For the elective patients the mean access time was 86.60 days (SD: 135.32), which is
approximately 12.5 weeks. It is difficult to estimate the expected access time for an ar-
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bitrary elective patient who is still on the list, since this can only be calculated retro-
spectively for patients who already received surgery. The department put a lot of effort
in shortening the waiting list and therefore 8 patients, who were on the waiting list for
over a year, were called in again at the outpatient clinic and subsequently had surgery
(if still necessary). If these patients are excluded, the mean access time for elective pa-
tients reduces to 60.07 days (SD: 52.60), which is approximately 8.5 weeks. The depart-
ment’s focus on the waiting list is also apparent from Figure 8.1 which shows that for
the patients who arrived and had surgery during the monitoring period, the access time
gradually decreased during the monitoring period.

Figure 8.1: Access time for new patients in chronological order
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8.3.3 Elective Patient Cancellations and Unused OR Time on a Slot
Level

We now zoom in to the slot level. Table 8.2 gives the results per week in terms of the
number of canceled elective slots and unused OR time (also given in slots). Recall that
one OR day consists of 3 slots.

For 4 elective and 5 semi-urgent patients the surgery duration was not recorded. We
assumed that the duration of their surgery was equal to the mean duration of surgeries
of the patients for whom the duration was recorded (2.10 slots for elective patients and
2.09 slots for semi-urgent patients). The weeks for which we had to make this assump-
tion are depicted with * in the Table. We see that the cancellations of elective slots are
relatively low (16.43%), and the number of unused OR slots is minimal (1.26%). The
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Table 8.2: Results for week 1 — 25 in slots (slots of urgent surgeries that were performed in the
regular OR hours are also given. All values in the table were calculated using the actual duration
of the surgeries. In case of the canceled elective slots we used the duration of the (first canceled)
surgery once it was performed)

Week OR Completed Completed Completed Overtime Canceled Unused OR

capacity  elective semi-urgent urgent elective capacity

1 27 24 5 0 2 0 0
2 18 13 6 0 1 11 0
3 21 11 13 0 3 3 0
4 18 12 9 0 3 7 0
5 27 23 9 2 7 0 0
6 15 12 3 3 3 0 0
7 24 16 10 0 2 0 1
8 15 10 8 0 3 1 0
9 15 6 10 0 1 3 0
10 21 12 12 0 3 2 1
11 21 13* 11 0 3 0 1
12 18 16 9 0 7 1 0
13 18* 11 11 0 4 0 1
14 18 11 8 0 1 2 0
15 18 14 10 2 8 6 1
16 15 10 6 3 4 7 0
17 21 14 10 0 3 4 0
18 15 14 5 0 4 3 0
19 18 15 4 0 1 2 0
20 24 9* 13 3 1 0 0
21 24* 25* 7 0 8 2 0
22 12 6 9 0 3 0 0
23 21 21 4 0 4 3 0
24 18* 18* 4 0 4 2 0
25 24* 23* 8 0 7 0 1
Total 486 359 204 13 90 59 6

Mean 19.44 14.36 8.16 0.52 3.60 2.36 0.24

SD 3.98 5.32 291 1.08 2.20 2.81 0.44

cancelation percentage is slightly lower than on a patient level; this is caused by divid-
ing the surgeries into slots. On the other hand, the mean overtime per week is 3.60 slots,
which adds up to more than 1 OR day, so that part of the low cancellations were real-
ized at the cost of overtime. On average there are 8.16 semi-urgent slots completed and
2.36 elective slots canceled which receive the semi-urgent status as well. This adds up
to a total of 10.52 slots per week that cannot be used to for elective surgeries, on average
approximately half of the capacity.
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Figure 8.2 gives a graphical representation of the results per week.

Figure 8.2: Graphical representation of results per week
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8.3.4 General Observations

During the monitoring period we also made a number of general observations. Patients
who were on the waiting list for over a year were difficult to plan, for example be-
cause the information on their health status was not up to date anymore. Since there
are usually enough other patients to plan, these patients are postponed time after time.
The department had to make a real effort to make a treatment plan for these patients
so that they could ultimately be removed from the waiting list. Patients have a lot of
influence themselves on the date of their surgery. For patients frequently calling about
their pain or their waiting time, an effort would be made to plan their surgery earlier.
Some patients postpone their surgery themselves; for example they first want to goon a
vacation, have work obligations or have doubts whether they want the surgery or not.
The latter issue is also related to the moment the patient receives notice of the surgery.
This is usually quite late (a week or less prior to the surgery date) and for some patients
then the time to (mentally or physically) prepare themselves is too short. On the other
hand, the late moment of informing the patient gives a lot of flexibility in the planning
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process. It allows the planner to reschedule elective patients on numerous occasions,
without them being aware of it. The continuous arrivals of semi-urgent patients, which
requires frequent rescheduling of elective patients, demands that the planner is on top of
the process. Since the planning was standardized to some extent, it could be performed
by an administrative employee instead of a neurosurgeon.

8.4 Discussion

In this chapter we studied how the Neurosurgery department of LUMC implemented
the methodology presented in Chapter 7. The aim of the methodology was to deter-
mine the amount of OR slots to dedicate to semi-urgent surgeries, by making a trade-off
between cancellations of elective surgeries due to semi-urgent surgeries, and unused
OR time due to excessive reservation of OR time for semi-urgent surgeries. Next to
the queuing model that enabled this trade-off, the methodology consisted of a Markov
model that allowed to distinguish between semi-urgent surgeries that had to be per-
formed within one or two weeks. The department started with the implementation of
the queuing model results and will later on decide on implementation of the policies
obtained with the Markov model (see Subsection 7.4.3).

Implementation studies are always challenging. The real world is not a model, and
many factors that influence the outcomes of an implementation somehow cannot be in-
corporated. However, from the results we can conclude that the department, supported
by a few additional measures, succeeded in implementation of the methodology. Even
though the OR capacity turned out to be less than expected, the number of canceled
elective slots was kept to a minimum while the available OR capacity was highly uti-
lized (98.74%). It should be noted that many elective and semi-urgent surgeries were
performed in overtime, which likely also contributed to these results. The continous
devotion of the administrative employee to improve the OR planning was essential. It
might be worthwile to consider sharing the planning task among two employees, to
guarantee continuity in case of holidays, illness and resignation.

By maintaining a temporary schedule to the last possible moment, the number of elec-
tive patient cancellations could be kept to a minimum. When the time between inform-
ing the patient on the surgery date and the actual surgery is long, the patient has more
time to prepare for the surgery. However, this reduces the flexibility for the planner to
move the patient around the OR schedule and will increase the number of elective pa-
tient cancellations. The Neurosurgery department considered being canceled as worse
for the patient than being called in late. The focus in this study was on the cancellation
of elective patients. Some semi-urgent patients were canceled as well, but rescheduled
quickly. Given the urgent character of the procedure, most patients understand the plan-
ning their surgery is more involved and the date might be subject to change.

The shortening of the waiting list made the pool of patients to choose from smaller. This
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reduced flexibility and made the planning process more difficult. We see that, especially
in a smaller department, there is yet another trade-off: a long waiting list versus an
involved planning and possibly unused OR time. The introduction of dedicated blocks
for specific surgery types lead to additional planning challenges. When there are many
patients to choose from, it is not hard to find a patient to fill a block. When the number
of patients with a specific surgery type on the waiting list decrease, it might become a
problem. An option is to rethink the size, number and composition of the blocks.

When we started this study, we were not sure whether to incorporate the summer hol-
iday. It turned out that the summer holiday was, in terms of available capacity, not
significantly different from the weeks in the monitoring period before and after. The
only difference was that the capacity during the summer holiday was more constant. It
is always difficult in these kind of studies to find a period that represents the normal
situation and is long enough for a reliable data analysis. These results suggest that it
might be worthwhile to just take an arbitrary period and consider that as normal.
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Chapter 9

The Emergency Observation and
Assessment Ward

9.1 Introduction

Over the last period, the ED has become more and more crowded, resulting in among
others an increased LOS and prolonged waiting times for patients. Also, ED crowding
may result in increased mortality rates and lower quality of care [95]. These problems
are not only caused by an aging population [166], a higher demand for acute care [137],
and the inability to transfer patients to inpatient beds [68, 137], but also by hospital
restructuring leading to fewer inpatient beds and more ambulatory care [172].

There are several measures hospitals can take in order to improve ED patient flow [138].
A recent development is the creation of an Emergency Observation and Assessment
Ward (EOA Ward). The definition and purpose of such wards varies across hospitals.
Also, in literature a consistent definition seems to be lacking. The review papers [50] and
[173] provide a comprehensive overview of definitions and concepts for EOA Wards.
Patient types that can be admitted vary, for example sometimes only medical patients
are considered [173]. Patients that need intensive care are usually excluded [50, 173]. At
an EOA Ward, patients are temporarily (less than 24 hours, 24-48 hours) hospitalized
until a bed at an inpatient ward becomes available. ED patients who have to wait for
test results or require observation for a short period of time can also be admitted. Given
the close monitoring, a staffed bed at this location is usually more expensive than a bed
at a regular inpatient ward.

The success of an EOA Ward depends on the overlying organizational structures, to-
gether with clear agreements upon transfers to regular inpatient wards, a well-defined
chain of command, and access to specialist consultations [50, 173]. Currently, little evi-
dence is available that operating an EOA Ward reduces ED crowding (see [50, 95, 138,
173] and the references therein). This is not only related to the ambiguity in the termi-
nology and definitions of the EOA Ward used in practice, but could also be caused by
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a lack of management information. This makes it very hard to measure the effects of
opening an EOA Ward on the ED patient flow. Furthermore, there may be a publication
bias since it is common to report only positive experiences [173]. This chapter aims at
filling this gap in literature by providing a clear model taking into account all relevant
patient flows, which allows for a quantitative analysis of the benefits of an EOA Ward.

The patient flow between the ED and inpatient wards is in most hospitals organized as
follows. Patients arrive at the ED, receive treatment and are then either discharged, ad-
mitted, or might die. Alternatively, patients can be admitted at another hospital. While
some transfers to other hospitals are necessary, for example because the other hospital is
specialized in the type of care the patient needs, other transfers are inevitable since there
are no inpatient beds available at the current location. The process of finding a bed and
subsequently waiting for transport can easily take several hours. During this time the
patient usually occupies an ED room, resulting in fewer ED capacity and substantial de-
lay for patients in the waiting room. Additionally, ED treatment is expensive compared
to inpatient care. It is therefore also financially attractive for hospitals to continue the
care process at one of their own inpatient wards, instead of transferring the patient to
another hospital after ED treatment.

Since the inpatient wards admit elective patients as well, it might be difficult to set
aside inpatient beds for urgent patients whose arrival is uncertain. At an EOA Ward
this is avoided since only urgent and observation patients from the ED are admitted.
The maximum LOS at the EOA Ward is usually short, with regular transfers to the
inpatient wards. Transfer moments can be fixed (for example twice a day) or patients
are transferred immediately when a bed becomes available. In addition to the elective
and urgent patient flows, the inpatient wards also receive patients from the ICU.

In this chapter we present a queuing model (Section 9.2) that can be used to evaluate the
effect of employing an EOA Ward. We analyze a small example in Section 9.3 and calcu-
late performance measures such as the number of elective and urgent inpatient admis-
sions. Many work in improving ED patient flow has been done using simulation tech-
niques (see e.g., [13, 44, 61, 96]). Fewer examples use queuing theory [47, 83, 133, 162].
Even though the EOA Ward has been subject of research quite often in the last decade,
we were not able to find an analytical evaluation of its effect in terms of inpatient ad-
missions as we present here.

9.2 Model

In this section we describe our mathematical model, which is based on Wilkinson’s
Equivalent Random Method (ERM) [200], a methodology developed to analyze over-
flow systems. The inpatient wards and EOA Ward can also be modeled as an overflow
system, where the inpatient wards are the primary wards (i.e., the wards that generate
the overflow of urgent patients) and the EOA Ward is the overflow ward where urgent



9.2. MODEL 157

patients are routed if the inpatient ward is full. We have I primary wards, with capacity
¢, i =1,...,1. We assume that the LOS at ward i is exponentially distributed with mean
p; ", where the LOS for elective and urgent patients at ward i is the same, but the LOS
per ward may be different, so that p; # p; fori,j € I, i # j. Urgent patients arrive at
primary ward ¢ with rate \;,. If all beds at the primary ward are occupied, the urgent
patient is routed to the EOA Ward. If the EOA Ward, which has a capacity of ¢, staffed
beds, is fully occupied as well, the patient is blocked (again) and leaves.

Figure 9.1: ED — primary ward — EOA Ward patient flow; example with two primary wards
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All urgent patients at the EOA Ward have the same exponential distributed LOS with
rate fioer. Urgent patients who originated from primary ward ¢ are transferred from
the EOA Ward to primary ward i with rate ;. The LOS at primary ward i is for these
patients again exponential with mean 4 '. Patients directly routed from the ED to the
EOA Ward arrive with Poisson rate )y and have an exponentially distributed LOS with
mean /i, "'. Elective patients are blocked when the primary ward is full. The elective
patient demand at the primary wards, which also incorporates patients from the ICU, is
modeled with a Poisson process with rate \;.. Although elective arrivals are scheduled,
random fluctuations in the number of scheduled arrivals make the Poisson assumption
plausible [28]. Figure 9.1 summarizes our overflow system.

9.2.1 Global Balance Equation

We denote the number of elective and urgent patients present at primary ward ¢ with
n;e and n;, resp. The number of urgent patients from primary ward ¢ present at the EOA
Ward is given by ng;, and the number of patients present directly routed to the EOA
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Ward is denoted by ngy. The state space for the overflow system in Figure 9.1 is given
by:

S: {Il: (n007n017-"7”0]7”167-"anle>n1u7-"anlu); Nie + Niy, Sci VZ;
1
> nio < Co; e, M, Moz o0 > 0 Vi) 9.1)
i=0

Denote 7(n) as the equilibrium probability that n patients are present in the system. We
obtain the following global balance equation:
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This equation can be solved explicitly only for specific values of the system parameters
[21]. We therefore apply the method as discussed in [128], which requires that i, = pioper-
We adapt it such that 1; # jiover- Our model shows strong similarities with the model of
Schehrer [170], but we add an extra flow to represent the elective patients arriving at the
primary ward. We first analyze the model without transfers from the EOA Ward to the
primary wards. Subsequently we introduce transfers and apply the approach presented
in [21] to determine the number of patients present at each ward.
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9.2.2 No Transfers from the EOA Ward to the Primary Wards

We first analyze the situation where patients at the EOA Ward are not transferred to the
primary wards (see Figure 9.2).

Figure 9.2: No transfers to the primary wards; example with two primary wards
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We do so by adapting the global balance equation (9.2) by setting 7, = 0 Vi. Now we can
solve the global balance equations explicitly. In line with [128] we use a probability gen-
erating function approach to determine the mean, E;, and variance, V;, of the overflow
of urgent patients from primary ward 7 at the EOA Ward in case of infinite EOA Ward
capacity. Since ¢y = oo, and since the overflow processes from the primary wards are
independent, E; and V; can be determined for each primary ward 7 in isolation. We only
want to calculate the blocking probability at the overflow, and thus it is not required to
know whether a patient residing at primary ward i is of the urgent or elective type. Let
n; = n; + n;, denote the number of patients at primary ward 7, and let \; = A\;e + Ay,
denote the total arrival rate at primary ward . The global balance equation simplifies
to:

T (n0i, i) (i + 1ifti + Noittover)
= Nim(ngi, g — 1) + (ng; + 1) proverm™(no; + 1, n;) + (n; + 1) pym(ng;, ng + 1)
for n; <,
T(10i, i) (Niw + Mt + Noiftover)
= Nm(ngi,n; — 1) + (no; + 1) troverm™(noi + 1, 15) + Nigm(no; — 1, n4)
for n; = ¢;. 9.3)
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We define the probability generating function of the number of urgent patients from
ward ¢ present at the EOA Ward, G, ,,,(2), as:

o0

Gin,(2) = Z 7(noi, i) 2", (9.4)

n0; =0

where |z| < 1. Multiplication of (9.3) with 2" and the summation of the result over
ng; = 0,...,00 yields

d
[)‘Z + ni:ui] Gl,m(z) + ,Uover(z - 1)@6’1’”1(2)
= )\iGi’mfl(Z) + (nz + 1),uiGi,m+1 (Z) for 0 <n; <c,

d
[Niu(1 = 2) + nip] G, (2) + pover (2 — 1)EGi,ni(2)
= )\iGi’mfl(Z) for n; = ¢;. (95)

Now E,; and V; can be derived from:

ci d
E; = ZEGLM<Z>’Z=1
n;=0
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Taking the first derivative of (9.5) and evaluating at z = 1, gives:

(Ai + niphi + Lover) i)
= Nigilni — 1]+ (ni + Dpagiln; + 1] for 0 <ny; < ¢,
(,uover + TL,/LZ) 9i [nz] - /\zuPz(Cz)
= Nigi[ni — 1] for n; = ¢, 9.7)

where gi[n;] = LG, (2)].—1 and Pi(c;) = Erl (,*7 c) Then E, is obtained by the sum-
mation of (9.7) forn; =0,...,¢;:
)\,
E; = —Pi(c:). (9.8)

/Lover

The variance can be calculated accordingly by taking the second derivative of (9.5) and
evaluating at z = 1:

(Ni 4+ nifti + 2pover) hi[ni]
(Mitts + 2ftover) Pi[ns] — 2Xi0.: 0]
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where h;[n;] = %Gmi (2)|2=1. The summation of the result for n, = 0, ..., ¢; yields:
)\iu 2

over

where g;[c;] can be determined recursively from (9.7) with g;|—1] = 0. The direct patient
flow arriving at the EOA Ward can be represented by an M /M /oo queue. The mean E,
and variance Vj of this stream is therefore given by:

A

E, = =
Ho

Vo = &. (9.11)
Mo

Using the information obtained in this section, we are now able to define an (artificial)
equivalent primary ward with service rate /.., which generates the same traffic as the
i overflow (urgent) and direct streams together. Since only urgent patients are routed
to the EOA Ward, the elective patients who do not cause overflow do not need to be
incorporated in the equivalent primary ward. The equivalent primary ward has artificial
load a and capacity C' such that [200]:

aErl(a,C) = E
a
E<1_E+C+1—|—]E—a) =V, (9.12)

where, since the overflow processes from the primary wards and the direct arrival pro-
cess are independent, the expectation and variation of the aggregated overflow, E and
V, are given by:

I
E = > E

1=0
I
Vo= ) V. (9.13)

The blocking probability for patients from ward ¢ and the direct arriving patients (i = 0)
is given by the Katz approximation [203], which takes the peakedness, (; = %, of the
separate flows into account:

aErl(a,C + c)
K; =
aErl(a,C)

<U(C, co) t+ CZ— 11 (1—w(C, co)_1)> , (9.14)




162  CHAPTER 9. THE EMERGENCY OBSERVATION AND ASSESSMENT WARD

with ¢ =  and v(C, ¢p) can be determined recursively from:

. a/j ‘
_ =1,2,...
UGI) = B o © ) —a-aBr@onc -1y b

v(C,0) = 1. (9.15)

Since the direct arrival stream is Poisson, we have that {, = 1. It follows from the consis-
tency requirements ZLO E,K; = EK and Zfzo E;(; = E(, where K denotes the overall
blocking probability, that the Katz approximation is exact in this case [203].

The mean number of urgent patients from primary ward i present at the EOA Ward,
E[No;], is given by:

Hover 7

The mean number of patients who directly arrived at the EOA Ward, E[Ny|, equals:

B{Nan] = 221~ o). 9.17)

9.2.3 Transfers from the EOA Ward to the Primary Wards

Finally, we allow patient transfers from the EOA Ward back to the primary wards. It
was assumed that .., was the same for all patients, and therefore we define ~; such
that ftoper = pi + 7, Vi. In this scenario we obviously have that iy, > 1, and this is
exactly the model as depicted in Figure 9.1. We approximate the arrival rate at primary
ward i, v;, by the sum of the arrivals of elective and urgent patients (\;. and \;, resp.)

and the patients transferred from the EOA Ward, +,E[Ny,], [21]:
Vi = Nie + Aiu + V[ Nog]- (9.18)

A fraction of this stream, &;, is routed to the EOA Ward when all beds at primary ward
i are occupied:

To analyze the model for ; > 0, we replace \;, by x; and \; by v; in (9.7 — 9.10). We then
obtain a system of equations, which can be solved for E[N,] using fixed point iteration
with initial value E[Ny,;| = 0 [21].
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The mean of the total number of patients present at the EOA Ward, E[Ny], and the mean
of the total number of patients present at primary ward i, E[V;], are given by:

E[No] = > E[Ny]
i=0
EN] = 2 (1 — Brl (i c)) . (9.20)
Hi 125
The mean occupation, p;, of the EOA Ward and the primary wards, is given by:
g = PNl 9.21)

C;

The mean number of patients blocked or admitted at the wards can be calculated ac-
cordingly.

9.3 Results

We now use the model from Subsection 9.2.3 to analyze a simple example for a hospital
with two primary wards. Primary ward 1 has a capacity of ¢; = 200 beds and admits
only medical patients, whose mean LOS is five days (so ;11 = 1). The elective patient
arrival rate \;. equals 26 patients per day, and the urgent patient arrival rate A, is 14
patients per day, so that the total patient arrival rate at ward 1, \; = 40. Primary ward 2
admits only surgical patients, with ¢, = 200, a mean LOS of four days (112 = }L), Aoe = 37,
Ay, = 13, and Ay = 50. Adding capacity by creating so-called overbeds is not allowed.

Patients arrive directly at the EOA Ward with rate Ay = 2 and have a service rate of
to = 4. With this flow we represent patients who only require observation for a short
period of time (on average six hours in this case). The mean LOS for urgent patients at
the EOA Ward is set on 36 hours, so that ji,ye, = % Consequently, v1 = floper—1 = 1—75 and
Yo = fhover — M2 = % This implies that patients with a longer LOS should be transferred
back sooner to the primary ward than patients with a shorter LOS, in order to keep
the LOS at the EOA Ward the same for all urgent patients. Table 9.1 summarizes the
parameter values.

9.3.1 Opening the EOA Ward

Suppose the hospital considers opening an EOA Ward. We first analyze the situation
where only urgent patients are admitted at this ward (so for now, we set Ay = 0). In
Table 9.2 for ¢y = 0 (no EOA Ward, i.e., the old situation), and ¢y = 4, 6, 8, 12 the blocking
probabilities for elective, P(B,.), and urgent patients, P(B;,), are given. The number
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Table 9.1: Parameter values for EOA Ward example

Parameter Value | Parameter Value
C1 200 Mo 4
¢ 200 | fiover 2
Ale 26 751 %
A 14 142 i
A2e 37 71 115
Aoy 13 Y2 2

of rejected elective, B,., and urgent patients, B,,, is given per ward per day, and the
number of admitted elective, £P/y, and admitted urgent, U P/y, patients per year are
given.

Table 9.2: Results for opening an EOA Ward

Co P(Bze) Ble ]P(Blu> Blu IED(BQE) BQe ]P)(B2u) BQu EP/y UP/y
0 54% 14144 54% 0.7616 54% 2.0128 54% 0.7072 21,753 9,323
4 6.0% 15547 24% 03313 58% 21469 21% 02733 21,642 9,633
6 6.2% 15998 15% 02024 59% 21885 1.1% 0.1468 21,610 9,726
8 6.3% 16352 0.1% 0.1035 6.0% 22110 0.1% 0.0796 21,587 9,845
12 64% 16652 02% 0.0215 6.0% 22322 01% 0.0169 21,577 9,840

What we see is that the blocking probability for urgent patients decreases, which was
expected since we added capacity for these patients. However, since the hospital is now
able to admit more urgent patients, ultimately there is less capacity available at the
primary wards for the elective patients which results in repression of elective patients.
An EOA Ward with four beds results in a total of 310 more (9,633 vs. 9,323) urgent
patients admitted per year, but at the same time 111 less elective patients are admitted
per year (21,642 vs. 21,753). It follows that the opening of the EOA Ward also affects the
elective patient flow.

9.3.2 Admitting Observation Patients

Following the opening of the EOA Ward, the hospital decides that patients from the ED
requiring observation should also be admitted at the EOA Ward (thus we set \; = 2). It
is obvious that more beds are required to maintain the decreased blocking probabilities
for urgent patients (Table 9.3), but the blocking probabilities for elective patients remain
about the same.

9.3.3 Increasing Urgent Admissions

As mentioned in the Introduction, one of the reasons to open an EOA Ward is to increase
the number of urgent patient admissions through the ED. Table 9.4 shows for various
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Table 9.3: Results for admitting observation patients

Co P(Bze) Ble P(Blu) Blu ]P)(BQe) BQ@ ]P)(B2u) BZu IP)(BO) BO
4 59%  1.5409 2.7% 0.3716  58% 21377 2.3% 0.3019 2.2% 0.4452
12 64% 1.6647 02% 0.0228 6.0% 22319 01% 0.0176 1.1% 0.0218

rates of increase, f,, in the arrival rate of urgent patients, \;,, the required size of the
EOA Ward for which P(B;,) ~ 1%. Note that \; = 0.

Table 9.4: Results for increasing urgent admissions

fu Co ]P)(Bze) Ble ]P)(Blu) Blu ]P)(BQC) BQ@ P(BQLL) B2u EP/y UP/y
5% 8 7.6% 19716 12% 01758 69% 25465 0.8% 01176 21,342 10,262
10% 10 91% 23664 1.0% 01601 79% 29208 0.7% 0.0954 21,065 10,748
20% 12 122% 31753 13% 02112 99%  3.6731 1.0%  0.1502 20,500 11,768
50% 22 222% 57827 13% 02816 16.6% 6.1434 1.0% 01955 18,646 14,612

We see that an increase in the number of urgent patient admissions has a tremendous
effect on the number of elective patient admissions. For example in the case of a 10%
increase, the number of elective patient admissions decreases from 21,753 to 21,065 per
year.

9.3.4 Maintaining the Number of Elective Patient Admissions

If the hospital wishes to maintain the number of elective patient admissions, it has two
options: increase the number of beds at the primary wards or stop transferring patients
from the EOA Ward back to the primary wards. The latter option would transform the
EOA Ward to a long stay ward for urgent patients, and therefore we only analyze the
first option. Table 9.5 gives for each value of f, the required number of beds at the
primary wards, ¢; and ¢,, and the extra number of beds required at the primary wards,
¢4, compared to the initial situation where ¢; = ¢, = 200, such that the elective patient
blocking probability is maintained at its initial value of ~ 5%. Again, note that Ay = 0.

Table 9.5: Results for maintaining the number of elective patient admissions

fu Co C1 C2 Cy
0% 6 203 202 5

5% 6 207 205 12
10% 6 210 208 18
20% 6 215 215 30
50% 8 238 229 67

Since the number of inpatient beds increases, more urgent patients can be admitted
directly at the primary wards and thus less EOA Ward capacity is required to keep
P(Bj,) = 1%.
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9.4 Discussion

Inpatient wards designed to improve the urgent patient flow have gained increased
popularity during the last decade. In this chapter we have developed a queuing model,
based on Wilkinson’s Equivalent Random Method [200], that allows for a quantification
of the effects of these EOA Wards in terms of elective and urgent patient admissions.
In addition to the extensions to the ERM made in [128] and [170], our model enables
the analysis of an overflow system for which the service rate at the primary wards (or
cells in the ERM terminology) is not equal to the service rate at the overflow ward (or
cell). Furthermore we have added an extra arrival stream to the primary wards which
is blocked when all beds are occupied. For analytical tractability, we assumed the LOS
at the primary wards and EOA Ward is exponentially distributed. In [128] the authors
show for a similar system that the outcomes are insensitive to the service time distribu-
tion, as is the case for many loss models.

With a simple example of a hospital with two primary wards, we have shown that open-
ing an EOA Ward results in an increase of urgent patient admissions, but at the same
time in a decrease in the number of elective patient admissions. The elective patients are
repressed by the extra admitted urgent patients who return to the primary ward from
the EOA Ward. We assumed that the urgent patient flow remained constant over time.
In reality, the added capacity may attract extra urgent patients, which will in turn result
in even less capacity for elective patients. To overcome this effect, next to the EOA Ward
capacity created, additional inpatient beds should be added. This in turn results in a de-
crease of the number of EOA Ward beds required, which makes the EOA Ward a small
ward that is possibly difficult to staff. In the example we incorporated only two, very
large inpatient wards. In case of more wards with smaller capacities than in our exam-
ple, the blocking probabilities at these wards are more sensitive to an increase in patient
arrivals and thus the repression effect will remain and possibly even worsen. Another
important factor to consider is the maximum LOS at the EOA Ward. In our example
we used a maximum LOS of 36 hours. When this is shortened to 24 hours, the number
of urgent admissions will increase and thus the repression effect will get worse. When
determining the maximum LOS this phenomenon should be taken into account as well.
The model allows for an easy evaluation of the repression effect in case of changes in
the EOA Ward LOS.

EOA Wards definitely have advantages, such as the fact that the admission of urgent
patients is centrally organized, or that admissions during the night for regular inpatient
wards are avoided. Given the results presented in this chapter, we can also perceive the
EOA Ward as an instrument to control the elective/urgent patient ratio. However, the
effect on elective patient admissions should not be neglected, but rather, studied before
the decision to open an EOA Ward is made. Other possibilities to improve urgent patient
flow are likely to have less adverse effects and should also be taken into consideration.



Epilogue

We discussed the difficult decisions that have to be made on the distribution of health-
care resources in Chapter 1. In this concluding chapter we briefly review the key results
obtained and how they can support decision making processes in a healthcare setting.

We started in Chapter 2 with a review of queuing theory and networks of queues in par-
ticular. We showed that these methodologies are very well suited to model and analyze
healthcare networks, even though there are still a couple of mathematical hurdles to
take. Modeling hospital departments as queuing networks, thus capturing their inter-
dependency, will become increasingly important in order to make the transfer from a
single to a multi-departmental modeling approach.

In Part II four different capacity distribution problems related to outpatient clinics and
diagnostic facilities were outlined. The re-distribution of tasks and responsibilities
among different groups of healthcare professionals resulted in better clinic performance
in Chapter 3. Although the implementation was successful, only the problem at hand
was solved, as is the case with many improvement studies. A challenge for the future
would be to develop methodologies that ensure continuous monitoring and improve-
ment, so that when the circumstances or the clinic environment changes, potential prob-
lems will be recognized and solved before they even appear.

The scheduling of appointment patients during periods of low walk-in demand can
lead to acceptable access and waiting times for resp. appointment and walk-in patients
in Chapter 4. Introducing a reservation policy for priority jobs, for example patients in
a care pathway, allowed for a trade-off between accessibility and waiting time for resp.
priority and non-priority jobs (Chapter 5). The latter two models show that performance
targets in terms of access and waiting times can be achieved for several patient groups
at the same time.

With the game-theoretic model in Chapter 6 we showed that hospital departments can
be stimulated to provide a reliable estimate of future MRI demand, so that a sensible
distribution of MRI capacity is ensured. Implementation of the models of Chapters 4-6
would definitely be challenging, but also worthwhile given the potential efficiency gain.

Part III also contained three chapters, this time on topics related to urgent patient flow.
Chapter 7 and 8 outlined a methodology and consequently its implementation, de-
signed to determine the amount of OR time that should be allocated to semi-urgent
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patients. The goal was to balance the cancellation of elective patients and unused OR
time, caused by variations in semi-urgent patient arrivals. The LUMC Neurosurgery de-
partment was successfull in implementing the method, but the process required a vast
amount of time and effort. It would be interesting to study whether the implementa-
tion of this methodology in other hospitals would involve the same complications the
LUMC encountered.

In Chapter 9 we studied the distribution of staffed beds among regular inpatient wards
and the EOA Ward. The latter type of ward is designed to increase the admission rates
of urgent patients through the ED. We showed that an increase of urgent admissions
through a new ward, results in a repression of elective patients at the inpatient wards.
To overcome this effect, additional inpatient beds should be added. These results clearly
demonstrate the potential danger of employing a single department view.

All models presented in parts II and III allow for quantitative analysis of resource dis-
tribution problems in a healthcare setting. In the process of defining a mathematical
model, thorough discussion on the process and problem is required, which is an ad-
vantage. Additionally, the ‘clean” model outcomes shift the attention from specific em-
ployees or departments to steps in the process that might be improved or removed. We
can conclude that mathematical modeling contributes to higher quality, more sound de-
cision making in healthcare. Of course, we are not there yet. As Chapter 8 shows, the
development of a mathematical model is only the first, and perhaps even the easiest step.
The next challenge lies in the implementation.
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Emergency Observation and Assessment (Ward)
Equivalent Random Method
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Leiden University Medical Center
Length of Stay

Magnetic Resonance Imaging (Scanner)
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Preanesthesia Evaluation Clinic
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Summary

In this dissertation we study several problems related to the management of healthcare
and the cure of disease. In each chapter a hospital capacity distribution problem is ana-
lyzed using techniques from operations research, also known as mathematical decision
theory. The problems considered are inspired by logistical challenges faced by Leiden
University Medical Center (LUMC). Several of the solutions we present in this disserta-
tion have been implemented at LUMC.

Considering our aging population, shrinking workforce and the current hospital effi-
ciency levels it will be difficult, if not impossible, to provide an appropriate level of care
for the sick and the elderly in the coming decades. Given what is currently at stake, it is
hard to understand that it is quite common in hospitals to avoid explicit decisions on re-
source allocation and capacity distribution and just anticipate on ad-hoc basis on prob-
lems that occur. This is sometimes accompanied with very undesirable system outcomes
such as patient cancellations and extremely long access (the time the patient spends on
the waiting list) or waiting (the time the patient spends in the hospital waiting) times.
The models we present allow for a quantification of consequences of capacity distri-
bution decisions. The item that is distributed can either be time, or another kind of
resource such as staffed beds. With the models a clear and succinct understanding of
the problem, its possible solutions, and implications of these solutions can be obtained.

This dissertation consists of three parts. The first part serves as an introduction and con-
tains the Introduction Chapter, 1, which discusses recent developments in the healthcare
sector and the role of Operations Research therein, and Chapter 2, which provides an
introduction to queues, networks of queues, and their applications in healthcare.

In the second part of the dissertation we focus on challenges for outpatient clinics and
diagnostic facilities. In Chapter 3 we study the reorganization of an outpatient clinic.
We demonstrate how the involvement of essential employees combined with a queuing
network model designed to support the decision making process results in a successful
intervention. Key points in the intervention are the rescheduling of appointments and
the reallocation of tasks.

Chapter 4 presents a methodology to develop appointment schedules for outpatient
clinics with unscheduled (walk-in) and scheduled (appointment) patients. The goal is
an appointment schedule that keeps waiting time at the facility for unscheduled patients
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below an acceptable level, while controlling the access time for scheduled patients. A
cyclic queuing and a Markov decision model are combined with an algorithm to deter-
mine an appointment schedule that satisfies all requirements.

Chapter 5 is motivated by the increasing popularity of care pathways in outpatient clin-
ics. Hospitals aim to optimize the flow of patients in a care pathway by prioritizing them
in the appointment planning process. As a result, regular patients who are not in a care
pathway may experience increased waiting times. We develop a queuing model with a
reservation scheme that allows for a trade-off between the accessibility for patients from
the care pathway and waiting time for regular patients at an outpatient clinic.

In Chapter 6 we consider an MRI scanning facility run by a Radiology department. Sev-
eral medical departments compete for capacity and have private information regarding
their demand for scans. The fairness of the capacity allocation by the Radiology depart-
ment depends on the quality of the information provided by the medical departments.
We employ a game-theoretic approach that stimulates the disclosure of true demand, so
that capacity can be allocated fairly.

In the last part we study challenges that evolve when urgent and elective patient flow
meet. Chapter 7 studies the trade-off between cancellations of elective surgeries due to
semi-urgent surgeries, and unused operating room (OR) time due to excessive reserva-
tion of OR time for semi-urgent surgeries. Semi-urgent surgeries, to be performed soon
but not necessarily today, pose an uncertain demand on available hospital resources,
and interfere with the planning of elective patients. For a highly utilized OR, reserva-
tion of OR time for semi-urgent surgeries avoids excessive cancellations of elective surg-
eries, but may also result in unused OR time, since arrivals of semi-urgent patients are
unpredictable. We use a discrete-time queuing and a Markov decision model to smooth
the planning process.

Using the methodology presented in Chapter 7, part of the OR capacity of the Neuro-
surgery department at LUMC was allocated to semi-urgent surgeries. In Chapter 8 we
study the implementation process and the effect of dedicating OR slots to semi-urgent
surgeries on elective patient cancellations and OR utilization.

A recent development to reduce Emergency Department crowding and increase urgent
patient admissions is the opening of an Emergency Observation and Assessment Ward
(EOA Ward). At these wards urgent patients are temporarily hospitalized until they can
be transferred to an inpatient bed. In Chapter 9 we present an overflow model to evalu-
ate the effect of employing an EOA Ward on elective and urgent patient admissions.

All models presented in parts II and III allow for a quantitative analysis of resource
distribution problems in healthcare. We can conclude that mathematical modeling con-
tributes to higher quality, more sound decision making in healthcare.



Samenvatting

In dit proefschrift bestuderen we verschillende problemen gerelateerd aan de orga-

nisatie van de gezondheidszorg en de behandeling van patiénten. Gebruikmakend van

technieken uit de Operationele Research, ook wel bekend als Mathematische Besliskun-

de, wordt in elk hoofdstuk een probleem geanalyseerd dat betrekking heeft op de verde-

ling van (een gedeelte van) de ziekenhuiscapaciteit. Logistieke uitdagingen, geinspireerd
op de dagelijkse praktijk van het Leids Universitair Medisch Centrum (LUMC), vormen

de basis van de bestudeerde materie. Verschillende oplossingen die in dit proefschrift

gepresenteerd worden, zijn ondertussen geimplementeerd in het LUMC.

De vergrijzing, de kleiner wordende beroepsbevolking en het huidige efficiéntieniveau
in de meeste ziekenhuizen, maken het moeilijk, zo niet onmogelijk, om voldoende zorg
en verzorging voor de ouderen en zieken in onze samenleving te garanderen. Gezien
wat er op het spel staat, is het moeilijk te begrijpen dat het in ziekenhuizen eerder
regel dan uitzondering is om expliciete beslissingen over de verdeling van schaarse
goederen en capaciteit te vermijden. Vaak wordt ad hoc geanticipeerd op problemen
die spontaan lijken te ontstaan en vergezeld worden door ongewenste bij-effecten zoals
het afzeggen van patiénten voor behandelingen en zeer lange toegangstijden (de tijd
die de patiént op de wachtlijst staat) en wachttijden (de tijd die de patiént wacht in het
ziekenhuis). De modellen die we in dit proefschrift presenteren maken de gevolgen van
capaciteitsbeslissingen inzichtelijk. Wat voor soort capaciteit verdeeld wordt verschilt;
voorbeelden zijn tijd (bij de arts, op de MRI scanner) of een bed op de verpleegafdeling.
Met de modellen wordt een diepgaand inzicht verkregen van het probleem, de moge-
lijke oplossingen en de gevolgen van de gekozen oplossing.

Dit proefschrift bestaat uit drie delen. In het eerste deel wordt een inleiding op re-
cente ontwikkelingen in de gezondheidszorg en de rol van Operationele Research hierin
(Hoofdstuk 1), gevolgd door een inleiding in de wachtrijtheorie, met speciale aandacht
voor netwerken van wachtrijen en toepassingen van wachtrijtheorie in de gezond-
heidszorg (Hoofdstuk 2).

In het tweede gedeelte van dit proefschrift leggen we de focus op uitdagingen voor po-
liklinieken en diagnostische afdelingen. In Hoofdstuk 3 bestuderen we de reorganisatie
van een polikliniek. We demonstreren hoe een netwerk van wachtrijen, ontwikkeld om
het besluitsvormingsproces te ondersteunen, het personeel van de polikliniek faciliteert
bij het uitvoeren van een succesvolle interventie. De belangrijkste veranderingen zijn
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het herverdelen van taken en het op een ander moment plannen van afspraken.

Hoofdstuk 4 presenteert een methodologie waarmee afspraakschema’s voor polikli-
nieken met zowel inloop- als afspraakpatiénten ontworpen kunnen worden. Het doel
is een afspraakschema waarbij de wachttijd voor inlooppatiénten acceptabel is, ter-
wijl de toegangstijd voor afspraakpatiénten beperkt blijft. Een cyclisch wachtrijmodel
en een Markov beslissingsmodel worden gecombineerd met een algoritme om een af-
spraakschema te ontwerpen dat aan alle eisen voldoet.

Hoofdstuk 5 is gemotiveerd door de toenemende populariteit van zorgpaden. Zieken-
huizen proberen de patiéntenstroom in een zorgpad zoveel mogelijk te stroomlijnen
door deze patiénten voorrang te geven bij het plannen van afspraken. Een direct gevolg
is dat patiénten die niet in een zorgpad zijn opgenomen, hinder kunnen ondervinden in
de vorm van langere wacht- en toegangstijden. We ontwikkelen een wachtrijmodel met
een reserveringsschema, waarbij we voor een polikliniek een afweging maken tussen de
beschikbaarheid van afspraken voor zorgpadpatiénten enerzijds, en de wachttijd voor
reguliere patiénten anderzijds.

In Hoofdstuk 6 beschouwen we een MRI afdeling. Verschillende medische afdelingen
proberen zoveel mogelijk tijd op de scanner te verwerven, en geven daarbij soms een on-
juiste inschatting van het verwachte aantal scans voor de komende periode. De schaarse
MRI capaciteit kan alleen eerlijk verdeeld worden wanneer alle medische afdelingen
een goede inschatting geven. We laten zien, door een speltheoretisch model toe te passen,
dat het mogelijk is om de afdelingen zo te stimuleren dat ze dit ook doen.

In het laatste gedeelte van dit proefschrift bestuderen we uitdagingen die ontstaan wan-
neer spoed en electieve (planbare) patiéntenstromen elkaar kruisen. Hoofdstuk 7 be-
handelt de afweging tussen het afzeggen van electieve operaties door de tussenkomst
van semi-spoed patiénten, en ongebruikte operatietijd door het reserveren van teveel
tijd voor deze patiénten. Door de onvoorspelbaarheid van het precieze aantal semi-
spoed patiénten per week is de benodigde hoeveelheid operatietijd onzeker en komt
de planning van electieve patiénten in het gedrang. Wanneer de operatiekamers (OK)
veel gebruikt worden, biedt het reserveren van tijd voor semi-spoed patiénten uitkomst,
aangezien zo minder electieve patiénten afgezegd worden. Echter, door de eerder ge-
noemde onvoorspelbaarheid kan het ook zijn dat de OK leeg staat. We presenteren een
wachtrijmodel en een Markov beslissingsmodel om het planningsproces te reguleren.

Naar aanleiding van de resultaten uit Hoofdstuk 7 werd door de afdeling Neurochirurgie
van het LUMC een gedeelte van de OK capaciteit toegewezen aan semi-urgente oper-
aties. In Hoofdstuk 8 presenteren we een praktijkstudie, waarbij het implementatiepro-
ces en het effect van de reservering op het aantal afgezegde electieve operaties en de
OK bezetting bestudeerd worden.
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De acute opnameafdeling is een recente ontwikkeling, bedoeld om beddentekorten op
de reguliere verpleegafdelingen te omzeilen en zo het aantal spoedopnames via de
eerste hulp te verhogen. We analyseren in Hoofdstuk 9, met behulp van een overflow
model, de invloed van de acute opnameafdeling op het aantal opgenomen spoed- en
electieve patiénten.

Alle modellen gepresenteerd in deel II en IIl maken een kwantitatieve analyse van ca-
paciteitsverdeelproblemen mogelijk. We kunnen concluderen dat wiskundig modelleren
in positieve zin bijdraagt aan besluitvormingsprocessen in de gezondheidszorg.
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